Exercise Problems - 8

Data Types, Representations and Ranges of Values

- 1. Write a program that takes a string of '0's and '1's representing a positive integer n as input from the user and outputs the decimal value of n (for example, if the input is 1100, the answer should be 12). You may assume that the input string has at most 20 characters.
- 2. Write a program that takes a string consisting of 8 characters, each of which is '0' or '1', representing a signed binary integer value in 2's complement form and output the equivalent decimal value (for example, if the input is 11000001, the answer should be -63). Do the necessary error checking.
- 3. Modify the program for Question No.1 so that the result is printed as a hexadecimal number and also as an octal number (hint: use printf(''%X'') and printf(''%o'')).
- 4. Modify the program in Question No.1 so that it can also handle strings of '0's and '1's and a decimal point (for example, if the input is 1100.101, the answer should be 12.625). You may assume that the string has at most 20 characters.
- 5. Write a program that takes a string representing a positive real number k in decimal, where $k \leq 1000$ and k has at most 3 digits after the decimal point, as input and outputs its corresponding binary representation. You may truncate the output to a precision of at most 10 bits after the decimal point (for example, if the input is 12.625, the output should be 1100.101).
- 6. Refer to the definitions made in the library file limits.h for solving this question. Write a program that displays the following values (with respect to your system) and try to understand those values:
 - Number of bytes used to store variables of the following types: short, int, long int, long int.
 - Minimum value that can be represented by a signed long long int variable.
 - Maximum value that can be represented by a signed long long int variable.
 - Maximum value that can be represented by an unsigned int variable.

- 7. Refer to the definitions made in the library file float.h for solving this question. Write a program that displays the following values (with respect to your system) and try to understand those values:
 - Number of bytes used to represent a double variable.
 - Largest positive value a double variable can take.
 - Smallest positive value a double variable can take.
 - Number of bits in the mantissa while representing the value of a double variable.
 - Number of decimal digits of precision for the double data type.
 - Maximum positive integer x such that 2^{x-1} can be represented precisely using a double variable.
 - Difference between 1 and the smallest positive value greater than 1 that can be represented precisely using a double variable.