
CS1100 - Lecture 18

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

In the last lecture we introduced strings. Strings are character arrays which terminate
with a null character (\0). In this lecture we will develop some string handling programs
using ideas developed in the previous lecture.

Upper case conversion

First we will develop a program that takes a sequence of alphabets from user and computes
a new string in which all letters in the input string are replaced by their corresponding
upper case letters.

As explained in the previous class, the integer value of ‘A’-‘a’ is same as the difference
between the integer value of any upper case letter and the integer value of its corresponding
lower case letter. Suppose we define an integer variable shift whose value is ’A’-’a’.
If we add shift to a lower case letter, we get the corresponding upper case letter. For
example, ‘b’+shift has the same value as the expression ‘b’+‘A’-‘a’ which has the
same value as ‘b’-‘a’+‘A’ which has the same value as 1+‘A’ which is the same value
as ‘B’. This is the basic property that we use in this program.

The following program is a first attempt for upper case conversion.

#include<stdio.h>

int main()

{

char s1[20], s2[20];

int i, shift, errorFlag=0;

printf("Give a string to convert\n");

scanf("%s",s1);

i=0;

shift=’A’-’a’;

while(i<19&&s1[i]!=’\0’)

{

if(s1[i] >= ’a’ && s1[i] <= ’z’)

{

s2[i]=s1[i]+shift;

}

else if(s1[i] >= ’A’ && s1[i] <= ’Z’)

{

s2[i]=s1[i];

}

else

1

{

errorFlag=1;

break;

}

i++;

}

s2[i]=’\0’;

if(errorFlag)

printf("Error! The string has non-alphabets \n");

else

printf("new string is %s \n", s2);

return 0;

}

The above program takes a string s1 from the user as input. The length of the
character array s1 is 20. So it can store strings with length at most 19 non-null characters.
If we input a string of length smaller than 20, a \0 character is automatically after all
the other characters. The condition if(s1[i] >= ‘a’ && s1[i] <= ‘z’) checks if the
integer value corresponding to the each character of the string s1 is either equal to that of
‘a’, ‘z’ or lies between these two (i.e., if the character s1[i] is lower case character). If
the condition becomes true, s1[i]+shift is assigned to s2[i]. As we explained already,
this makes s2[i] to get assigned with the upper case character corresponding to the lower
case character s1[i]. If the condition if(s1[i] >= ‘a’ && s1[i] <= ‘z’) is false, the
program checks if(s1[i] >= ‘A’ && s1[i] <= ‘Z’), i.e., if s1[i] is an upper case
character. If this condition is true, s1[i] is copied to s2[i]. If both these conditions
are false, an errorFlag is set and the loop is exited. This process repeats from i=0, till
i becomes 19 or a ‘\0’ (null character) is reached. After exiting the while loop, the
string s2 will contain the upper characters of corresponding lower case letters in s1. A
‘\0’ character is appended to s2 to mark the end of string. This is to prevent a buffer
overflow when we later try to print the string s2. If errorFlag is not set, the string s2

is displayed.
Sample output of the program corresponding to the input ”Hello” is as follows.

Give a string to convert

Hello

new string is HELLO

The above program works if we enter strings of at most 19 characters length. If we
try to input a string which has length more than 19 characters, this might cause a buffer
overflow or a segmentation fault.

If we enter a string with spaces in it, the above program will not read the entire string.
This is because here the string is read using %s which reads characters until the first white
space character is encountered.

Suppose we give an input like ”Hello how are you”, the following output will be
displayed.

2

Give a string to convert

Hello how are you?

new string is HELLO

There are two modifications that can be used for rectifying the above program. We can
restrict the number of characters input to s1 to prevent buffer overflows. Moreover, we
can modify the format string used in scanf to allow input strings containing spaces. If we
use the instruction scanf(‘‘%19[∧\n]s’’,s1); to input s1, then only a maximum of 19
characters are stored into the array s1. Input to the array stops when either 19 characters
have already been stored or a newline character \n is entered, whichever happens earlier.
A null character ‘\0’ is automatically appended to s1 after other input characters.

About the field width specification in the format string, the following description is
given in man pages for scanf:

An optional decimal integer which specifies the maximum field width. Read-
ing of characters stops either when this maximum is reached or when a non-
matching character is found, whichever happens first. Most conversions dis-
card initial white space characters (the exceptions are noted below), and these
discarded characters don’t count toward the maximum field width. String input
conversions store a terminating null byte (‘\0’) to mark the end of the input;
the maximum field width does not include this terminator.

The modified program is given below.

#include<stdio.h>

int main()

{

char s1[20], s2[20], s3[20];

int i, shift, errorFlag=0;

printf("Give a string to convert\n");

scanf("%19[^\n]s",s1);

i=0;

shift=’A’-’a’;

while(i<19&&s1[i]!=’\0’)

{

if(s1[i] >= ’a’ && s1[i] <= ’z’)

{

s2[i]=s1[i]+shift;

}

else if(s1[i]==’ ’ || s1[i] >= ’A’ && s1[i] <= ’Z’)

{

s2[i]=s1[i];

}

else

{

errorFlag=1;

break;

3

}

i++;

}

s2[i]=’\0’;

if(errorFlag)

printf("Error! The string has non-alphabets \n");

else

printf("new string is %s \n", s2);

return 0;

}

If we give the input as “hEllO How Are You”, after executing the program the following
output will be displayed.

Give a string to convert

hEllO How Are You

new string is HELLO HOW ARE YOU

If we give the input as “This is a string for checking buffer overflow”, after executing
the program the following output will be displayed.

Give a string to convert

This is a string for checking buffer overflow

new string is THIS IS A STRING FO

Note that, big strings do not cause a buffer overflow in this modified program.

Substring search

A sequence of characters occurring in consecutive positions of a given string is called a
substring of the given string.
Consider a string ‘‘hellow how are you’’. Any character occurring in the string is a
substring of length 1. ‘‘el’’, ‘‘ow’’, ‘‘are you’’ etc. are also substrings of the given
string. But, ‘‘low!’’, ‘‘low d’’ etc. are not substrings of the given string.

We now consider the problem of taking two strings s1 and s2 as inputs and checking
whether s2 is a substring of s1. If s2 is a substring of s1 we need to find the starting
position of the first occurrence of the substring s2 in the string s1. If s2 is not a substring
of s1 we need to output a message to this effect.

4

An overview of the method we are planning to use is given below.

1. found=0

2. Input s1, compute the length of s1 and store it in l1

3. Input s2, compute the length of s2 and store it in l2

3. for(pos1=0;pos<l1-l2;pos++)

check if l2 charactes from pos1 in s1 match with s2.

if yes, found=1; break;

4. if found is 1

the substring is found, output pos1.

else

the substring is not found.

In the above method, s1 is the first string and l1 is the length of this string. The substring
to be searched is s2 and l2 is its length. The variable pos1 stores the current starting
position of our search in s1. Initially, pos1 is 0 and the first l2 characters of the string s1

is checked with the substring s2. If there is a match, the searching is stopped. Otherwise
the pos1 is incremented to 1 and l2 characters of s1 from position pos1 are compared
with the string s2 and so on. This repeats until either the substring is found or pos1

becomes l1 − l2. After this, there is no possibility of finding s2, because the number of
remaining characters in l1 is less than the length of the string s2.

To check if l2 characters from pos1 in s1 match with s2, we can do the following:

pos2=0;

while(pos2 < l2 && s1[pos1 + pos2]==s2[pos2])

pos2++;

if(pos2 == l2)

found=1;

If the variable found was set to 0 before entering the above block of code, this variable
will become 1 after executing the block of code only if s2 occurs as a substring of s1

starting from pos1. Note that, the position indicator pos1 of the string s1 is not varied
when this code is executed.

The following code segment extends the above idea by repeating the search by varying
pos1 from 0 to l1− l2 in the string s1.

found=0;

for(pos1=0; pos1<= l1 -l2; pos1++)

{

pos2=0;

while(pos2 < l2 && s1[pos1 + pos2]==s2[pos2])

pos2++;

if(pos2 == l2)

{

found=1;

break;

}

}

5

The following figure shows the above method applied to strings s1=‘‘ababacba’’ and
s2=‘‘abac’’.

a b a

pos1 = 0

c

a b a

pos1 = 1

c

a b a

pos1 = 2

c

a b a b a c b a

a b a b a c b a

a b a b a c b a

(i)

(ii)

(iii)

The substring s2 is found at position 2.

6

The following figure shows the method given in page 5 applied to strings s1=‘‘ababacba’’
and s2=‘‘abd’’.

a b a b a c b a
a b a b a c b a

a b a b a c b a a b a b a c b a

a b a b a c b a a b a b a c b a

(i) (ii)

(iii) (iv)

(v) (vi)

a b d

pos1 = 0

a b d

pos1 = 1

a b d

pos1 = 2

a b d

pos1 = 3

a b d

pos1 = 4

a b d

pos1 = 5

The substring s2 is not found in the search.

7

Using the method developed earlier we give a complete program for substring search
below.

#include<stdio.h>

int main()

{

char s1[20], s2[20], ch;

int l1, l2;

int i=0, pos1, pos2, found;

printf("Give first string (at most 19 characters)\n");

while(i<19)

{

scanf("%c",&s1[i]);

if(s1[i]==’\n’)

break;

i++;

}

s1[i]=’\0’;

l1=i;

if(i==19)

while(getchar()!=’\n’);

i=0;

printf("Give second string (at most 19 characters)\n");

while(i<19)

{

scanf("%c",&s2[i]);

if(s2[i]==’\n’)

break;

i++;

}

s2[i]=’\0’;

l2=i;

if(i==19)

while(getchar()!=’\n’);

if(l2==0)

{

printf("nothing to search \n");

return 0;

}

else

{

found=0;

for(pos1=0; pos1<= l1 -l2; pos1++)

{

pos2=0;

while(pos2 < l2 && s1[pos1 + pos2]==s2[pos2])

pos2++;

8

if(pos2 == l2)

{

found=1;

break;

}

}

if(found==1)

printf("found substring at posn %d \n", pos1);

else

printf("substring not found \n");

return 0;

}

}

This program can accept strings of length at most 19 and the strings may contain spaces.
The following code segment reads all characters including spaces from the user, until a
newline character is encountered or till 19 characters are read from the terminal, whichever
is earlier.

while(i<19)

{

scanf("%c",&s1[i]);

if(s1[i]==’\n’)

break;

i++;

}

After executing this loop, the value of i will be equal to the number of characters accepted
into s1 inside the loop (a maximum of 19 characters), except the newline character (if
any). The newline character entered as s1[i] is replaced by ‘\0’ to mark the end of the
string s1. After this, the value of i is stored into l1, the variable which represents the
length of s1. These tasks are done in the following two lines.

s1[i]=’\0’;

l1=i;

If we enter a string of length greater than 19, the first 19 characters are placed into the
array s1 and the character \0 is appended as s1[19]. The remaining characters entered
from the terminal will be present in the input buffer. This content from the buffer has
to be removed. Otherwise these characters will be read by the next scanf instruction in
the program and the user will not get a chance to enter the second string. The cleaning
of buffer is done using the instruction while(getchar()!=‘\n’);. Here, getchar()

reads a character from the input (or buffer) and the expression getchar()!=‘\n’ will
have value 1 only if the character read is a not a newline character. Note that, the while

instruction is immediately followed by a semicolon (;). Hence, the while instruction is
repeated until a newline character is read from the input (or buffer).

In a similar way, input of the second string s2 is also handled using the following lines.

9

i=0;

printf("Give second string (at most 19 characters)\n");

while(i<19)

{

scanf("%c",&s2[i]);

if(s2[i]==’\n’)

break;

i++;

}

s2[i]=’\0’;

l2=i;

if(i==19)

while(getchar()!=’\n’);

The remaining part of the code is already explained earlier.

Give first string (at most 19 characters)

ababacba

Give second string (at most 19 characters)

abac

found substring at posn 2

Give first string (at most 19 characters)

ababacba

Give second string (at most 19 characters)

abd

substring not found

For the inputs “hellow how are you” and “low”, the above program displays the
following output.

Give first string (at most 19 characters)

hellow how are you

Give second string (at most 19 characters)

low

found substring at posn 3

10

