
CS1100 - Lecture 23

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

Call by value using pointers

Recall that, C language supports only call by value for passing parameters. In this method,
when we invoke a function, the values of the actual parameters are copied respectively to
the locations of the formal parameters. Consider the following example.

An incorrect way of doing swap

#include <stdio.h>

void swap_try(int, int);

int main()

{

int a=10, b=20;

printf("a=%d, b=%d\n", a, b);

swap_try(a, b);

printf("a=%d, b=%d\n", a, b);

return(0);

}

void swap_try(int x, int y)

{

int temp;

temp=x;

x=y;

y=temp;

}

Initially, the program control is in the main() function and the current stack frame in
memory is as follows.

b

a 10

20

stack frame 1

1



After executing the first printf() in the main() function, the swap try(a,b) function
is invoked and a new stack frame for the function swap try() is created; the values of
formal parameters a and b get copied to the locations of the variables x and y in the
new stack frame. After this, program control transfers to the beginning of the function
swap try().

x

b

a

y

10

20

10

20

stack frame 1

temp

stack frame 2

junk

After executing the instruction temp=x;, the contents of the stack frame are as follows.

x

b

a

y

10

20

10

20

stack frame 1

temp

stack frame 2

10

The stack frame in memory after executing the instruction x=y; is shown below.

x

b

a

y

10

20

20

20

stack frame 1

temp

stack frame 2

10

2



After executing the instruction y=temp;, the stack frame in memory is as follows.

x

b

a

y

10

20

20

10

stack frame 1

temp

stack frame 2

10

In the next step, the function finishes its execution. So the frame 2 will be destroyed
and the control goes back to the main() function.

The memory state diagram at this point is as follows.

b

a 10

20

stack frame 1

When the next line is executed, the values of a and b will be displayed for a second
time. The output of the program is shown below.

a=10, b=20

a=10, b=20

Now, we can see that nothing has happened to the variables a and b. The change
was made only to x and y which had their values copied from a and b respectively. This
change does not affect the values of a and b in the stack frame of the main() function.
The changed variables also get destroyed when the function call returns.

3



Note that, even if we use the names a and b for formal parameters in the definition of
the function swap try() as given below, the program works exactly the same way as the
previous program.

A second incorrect way of swap

#include <stdio.h>

void swap_try(int, int);

int main()

{

int a=10, b=20;

printf("a=%d, b=%d\n", a, b);

swap_try(a, b);

printf("a=%d, b=%d\n", a, b);

return(0);

}

void swap_try(int a, int b)

{

int temp;

temp=a;

a=b;

b=temp;

}

Even though the variable names in main() and swap try() are the same, when the
function call swap try(a,b) is made from main(), a new stack frame is created for
swap try() with new locations for storing the values of the formal variables a and b

and the local variable temp. The modifications made inside swap try() affect only the
newly created variables a and b in the stack frame of swap try(). When the function
swap try() returns to main(), the stack frame of swap try() gets deleted and the mod-
ifications done to the new variables a and b are lost as in the first example.

4



Correcting the swap function

Since we have many situations where we would need to make modifications to data by
passing parameters to functions, we will go for an indirect way of modifying data values by
passing their addresses as formal parameters to functions. (However, it should emphasized
that what we use is call by value itself.)

If we want to get the values of variables a and b declared in main() interchanged using
a swap() function, we can use the following method.

Correct way of doing swap

#include <stdio.h>

void swap(int*, int*);

int main()

{

int a=10, b=20;

printf("a=%d, b=%d\n", a, b);

swap(&a, &b);

printf("a=%d, b=%d\n", a, b);

return(0);

}

void swap(int *x, int *y)

{

int temp;

temp=*x;

*x=*y;

*y=temp;

}

In the above program, the formal parameters of the function swap() are two pointers
to integers (int *x and int *y). From the main() function, when the swap() function
is invoked, the parameters passed are the addresses of the integer variables a and b.
When the swap(&a,&b); function call is made, the formal parameters x and y (which are
pointer variables) get their values from the values of the corresponding actual parameters
&a and &b. Note that, the types of the formal parameters and the corresponding actual
parameters match.

Consider the execution of the above program. The memory state diagram just before
the function call is shown below.

b

a 10

20

stack frame 1

1500

2000

5



When the function call swap(&a,&b) is executed, a new stack frame for the function
swap() is created in memory. This new stack frame will have locations for storing the
pointer variable x and y and the integer variable temp. The integer pointer variable x gets
the value of &a and the integer pointer variable y gets the value of &b. Initially, the value
of variable temp is junk. The memory state diagram after the function call is as follows.

x

b

a

y

10

20

1500

2000

stack frame 1

temp

stack frame 2

junk

2000

1500

Since x stores the address 1500, the value of the expression *x is the content of the
location 1500 which is 10. After executing the instruction *temp=*x;, the variable temp

gets the value 10. The memory state diagram at this stage is as follows.

x

b

a

y

10

20

1500

2000

stack frame 1

temp

stack frame 2

10

2000

1500

After that, the instruction *x=*y; is executed. Since y stores the address 2000, the
value of the expression *y is the content of the location 2000 which is 20. The expression
*x on the left hand side of the instruction refers to the location whose address is 1500

(which is the value of x). Therefore, after executing the instruction *x=*y;, the value 20

gets stored in the location with address 1500. The contents of memory locations at this
point of execution is shown below.

x

b

a

y

20

20

1500

2000

stack frame 1

temp

stack frame 2

10

2000

1500

6



When the instruction *y=temp; get executed, the variable temp is copied to the lo-
cation whose address is 2000 (which is the value of y). The contents of the memory
locations at this point is as follows.

x

b

a

y

20

10

1500

2000

stack frame 1

temp

stack frame 2

10

2000

1500

After executing the instruction *y=temp;, the function swap() finishes its execution.
Now, the frame 2 is destroyed and the program control returns to the main function.

b

a 20

10

stack frame 1

1500

2000

In the next line, the updated values of a and b will be displayed. The output of the
above program is given below.

a=10, b=20

a=20, b=10

Thus, if we want to change the values of some data using parameter passing, we should
pass the address of the data to be changed as parameter to the function. If x is a formal
parameter in the definition of a function f(), any modifications done to the value of x get
lost after the function call, because when the function f() returns to the calling function,
the frame containing x gets destroyed. However, if x is a pointer, any modifications done
to *x will persist even after returning from the function f().

7



Note that, even when the formal parameter x of a function f() is a pointer, any
modifications done to the value of x will be lost once the function call f() returns to the
calling function. The following program illustrates this.

A third incorrect definition of swap

#include <stdio.h>

void swap_try(int*, int*);

int main()

{

int a=10, b=20;

printf("a=%d, b=%d\n", a, b);

swap_try(&a, &b);

printf("a=%d, b=%d\n", a, b);

return(0);

}

void swap_try(int *x, int *y)

{

int *temp;

temp=x;

x=y;

y=temp;

}

The memory state diagram just before the function call is as follows.

b

a 10

20

stack frame 1

1500

2000

After the function call, the new frame for the function swap try() is created and the
current memory state diagram is as follows

x

b

a

y

10

20

1500

2000

stack frame 1

temp

stack frame 2

junk

2000

1500

In the above program, the variables temp, x and y are integer type pointer variables.
They can hold the addresses of an integer variables. After executing the instruction

8



temp=x;, the pointer variable temp gets the value of x, which is 1500. The memory state
diagram after executing the instruction temp=x; is shown below.

x

b

a

y

10

20

1500

2000

stack frame 1

temp

stack frame 2

1500

2000

1500

After that, the instruction x=y; is executed and x gets the value of y which is 2000.
The memory state diagram at this point is shown below.

x

b

a

y

10

20

2000

2000

stack frame 1

temp

stack frame 2

1500

2000

1500

Finally, the instruction y=temp gets executed and the pointer variable y gets the value
of temp which is 1500. The contents of the memory locations at this point is as follows.

x

b

a

y

20

10

2000

1500

stack frame 1

temp

stack frame 2

1500

2000

1500

9



After executing the instruction y=temp;, the function swap try() finishes its execu-
tion. Note that, during the execution of swap try(), the variables a and b in the stack
frame of main() are not at all modified.

b

a 10

20

stack frame 1

1500

2000

When the function swap try() returns to the main() function, frame 2 will be de-
stroyed. The value of a and b will be displayed in the next line. The output of the above
program is given below.

a=10, b=20

a=10, b=20

10


