
CS1100 - Lecture 10

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

Usually programming languages have more than one type of loops available. This is done
by the designers of the langauge to make the job of the programmers easier. Depending
on the problem to solve, some type of loop may be more suitable than others. In previous
classes, we studied about while loop and nested while loops. C supports two more
structured loop constructs.

do-while loop

This is another type of loops permitted in C. The way of writing a do-while loop and
its corresponding control flow diagram is shown in the figure below. Note that, control
statements like break and continue can appear in do-while loops as well and the way
they work is similar to that in the case of a while loop. However, we assume that, there
are no break or continue statements in any of the program blocks in the example shown
below.

Block 0

do

{

Block 1

}while(condition 1);

Block 2 condition 1

Block 1

Block 0

TrueFalse

Block 2

In this type of loop, the loop-condition is checked at the end of the loop. The difference
between a while loop and a do-while loop is that, first one has an entry condition and
the second one has an exit condition. Note that, according to the control flow diagram,
Block 1 is executed at least once, even before checking condition 1. After Block 1 is
executed, condition 1 is evaluated and if condition 1 evaluates to true, then program
control will go back to the beginning of Block 1. The execution of Block 1 and evaluation
of condition 1 is repeated in this way, until condition 1 becomes false.

1



Consider an example of a simple calculator, which repeatedly asks the user to enter
a pair of numbers and computes the sum of the given pair and displays the result to
the user. Each time after giving the result, the user should get an option to either stop
the calculator or continue by taking another pair of numbers to find their sum. In such
situations, a do-while loop is convenient.

#include<stdio.h>

int main()

{

int a, b, sum, option;

printf("\nWelcome! Here is your simiple calculator\n\n");

do

{

printf("Give two numbers to add \n");

scanf("%d%d",&a,&b);

sum=a+b;

printf("sum is %d\n",sum);

printf("Options 1: Do again, 0: Stop\n");

scanf("%d",&option);

} while(option==1);

printf("\nGood Bye! Have a nice day!\n");

return 0;

}

2



for loop

This is probably the most commonly used loop in C. The way of writing a for loop and
its associated control flow is shown in the following figure. We assume that there are
no break or continue statements in any of the program blocks in this figure, though in
general break and continue can occur within for loops as well.

Block 0

for(statement 1; condition 1; statement 2)

{

Block 1

}

Block 2

condition 1

Block 1

statement 1

statement 2

True

False

Block 2

Block 0

When control reaches the statement for, it will execute statement 1 and after that
the condition 1 will be evaluated. If the condition 1 evaluates to true, the program
control will enter the loop and execute Block 1. After the execution of Block 1, it will
execute statement 2 and the control will go back to condition 1. This checking of
the loop-condition, execution of Block 1 and statement 2 is repeated until condition
1 becomes false when it gets evaluated. Note that, statement 1 (the statement before
the first semi colon) is not executed repeatedly during this process. However, if this for
loop is an inner loop within some other outer loop, then statement 1 will be executed
whenever the control flow proceeds from Block 0 to the for loop.

3



The control flow diagram of a for loop nested within a while loop is shown below. In
this example, we assume that there are no break or continue statements in any of the
program blocks.

Block 0

while(condition 1)

{

Block 1

for(statement 1;condition 2;statement 2)

{

Block 2

}

Block 3

}

Block 4

condition 1

Block 1

statement 1

statement 2

True

False

Block 2

Block 0

condition 2

True

Block 3

Block 4

False

4



Examples of using for loop

The following program is for taking the first term and the common difference of an arith-
metic progression and a number n and output the first n terms of the progression.

#include<stdio.h>

int main()

{

int n, i, t, a, d;

printf("Give first term and common difference of the AP \n");

scanf("%d%d", &a,&d);

printf("Give the number of terms you want \n");

scanf("%d",&n);

printf("first %d terms of the AP are\n", n);

t=a;

for (i=1; i<=n; i++)

{

printf("%d \n",t);

t=t+d;

}

return 0;

}

The control flow of the above program is shown below.

i ≤ n

output t

i=1

i++

True

False

return

Input a, d, n

t=a

t=t+d

5



A program for taking the first term and the common difference of an arithmetic pro-
gression and a number n and output all terms which are less than n is given below.

#include<stdio.h>

int main()

{

int n, i, t, a, d;

printf("Give first term and common difference of the AP \n");

scanf("%d%d", &a,&d);

printf("Give the value of n \n");

scanf("%d",&n);

printf("terms less than %d are\n", n);

for (t=a; t<n; t=t+d)

{

printf("%d \n",t);

}

return 0;

}

The control flow of the above program is shown below.

t < n

output t

t=a

True

False

return

Input a, d, n

t=t+d

6



Structured and unstructured loops

The loops provided in programming languages like C are intended to make the control
flow structured. If loop 1 and loop 2 are not nested loops, moving the program control
from the middle of loop 1 to the middle of loop 2 should be avoided. Otherwise, the
control flow becomes unstructured and difficult to follow.

loop 1 loop 2

loop 1

loop 2

loop 1

loop 2

Figure 1: The first two figures show structured loops, whereas the third one is unstruc-
tured.

All the three types of loops we studied so far are examples of structured loop constructs.
Structured programming langauges like C doesnt provide the programmer with a ready
made easy to use unstructured loop construct. But still, there are some crude methods
available in C which will permit a programmer to write unstructured code. Since such
methods are advised to be avoided in modern programming, we will not study them in
this course.

7


