
CS1100 - Lecture 3

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

1 Introduction

Control flow of a program is the way the program counter changes during the program
execution. In previous classes, we have learned how the control flow happens sequentially
and a few cases of how control flow happens conditionally. Sometimes we can use a flow
chart to show the control flow of a program.

1.1 Conditional Construct

if is a conditional construct, that tests a condition, then changes the control flow based
on whether the condition is true or false. Different forms of the if statement with their
corresponding flow chart showing the control flow are shown below.

1.1.1 Form 1

if(condition)

{

Block 1

}

Instruction 1

condition

Block 1

Instruction 1

true false

Figure 1: i

In this form when the program control reaches the if instruction, the condition is
evaluated and if the condition evaluates to true, then instructions in Block 1 will be
executed. On the other hand, if the condition evaluates to false, then the execution of
instructions in Block 1 will be skipped.

1

1.1.2 Form 2

if(condition)

{

Block 1

}

else

{

Block 2

}

condition

Block 1

Instruction 1

true false

Block 2

Figure 2: ii

In this form when the program control reaches the if instruction, the condition is
evaluated and if the condition evaluates to true, then instructions in Block 1 will be
executed and the instructions in Block 2 will be skipped. On the other hand, if the
condition evaluates to false, then the execution of instructions in Block 1 will be skipped
and the instructions in Block 2 will be executed.

2

1.1.3 Form 3

if(condition 1)

{

Block 1

}

else if(condition 2)

{

Block 2

}

else if(condition 3)

{

Block 3

}

else

{

Block 4

}

Instruction 1

.

.

.

condition

Block 1

Instruction 1

true false

condition

Block 2

true false

condition

Block 3

true

1

2

3

Block 4

false

Figure 3: iii

When the control reaches the first if instruction, condition 1 is evaluated and if it
evaluates to true, Block 1 will be executed and Block 2 to Block 4 are skipped. If
condition 1 evaluates to false, Block 1 is skipped and condition 2 is evaluated. If condition
2 evaluates to true at this point, Block 2 will be executed and Block 3 and Block 4 are
skipped. If condition 2 evaluates to false, Block 2 is skipped and condition 3 is evaluated.
If condition 3 evaluates to true at this point, Block 3 will be executed and Block 4 will
be skipped. If condition 3 also evaluates to false, then Block 3 is skipped and Block 4 is
executed.

In general, there may be more conditions, not just 3.

3

The same logic can be implemented using nested if statements as follows.

if(condition 1)

{

Block 1

}

else

{

if(condition 2)

{

Block 2

}

else

{

if(condition 3)

{

Block 3

}

else

{

Block 4

}

}

}

Instruction 1

.

.

.

condition

Block 1

Instruction 1

true false

condition

Block 2

true false

condition

Block 3

true

1

2

3

Block 4

false

Figure 4: iii

However, Form 3 is preffered over the above nested form, to avoid deep nesting.

4

The usage of combination of different forms of if is illustarted in the example below.

/* Program to decide if three input numbers are

ascending, descending, neither or both */

#include<stdio.h>

int main()

{

int a, b,c;

printf("Give three numbers \n");

scanf("%d%d%d",&a, &b, &c);

if(a<b)

{

if (b<=c)

{

printf("ascending \n");

}

else

{

printf("neither ascending or descending \n");

}

}

else if(a>b)

{

if (b>=c)

{

printf("descending \n");

}

else

{

printf("neither ascending or descending \n");

}

}

else

{

if (b==c)

{

printf("both ascending and descending \n");

}

else if (b<c)

{

printf("ascending \n");

}

else

{

printf("descending \n");

}

}

return 0;

}

5

1.2 Iterative Constructs

For performing a particular task several times, repeating the instructions may not work
always. For example, consider a task of finding the sum of n numbers, where the value of n
is a part of the user input (which is unknown while writing the program). In this situation,
the number of times the instructions to update sum has to be repeated is unknown to the
programmer. Moreover, using only the instructions we have learned so far, even finding
the sum of 1000 numbers would need at least 1000 instructions, which is difficult.

while is one of the simplest iterative constructs. It is used for repeatedly executing a
set of instructions based on the result of evaluation of a condition.

A figure showing the syntax and a flow chart showing the control flow associated with
a while instruction is given below.

.

.

.

while(condition)

{

Block 1

}

.

.

.

condition

Block 1

Instruction 1

true

false

Block 2

Figure 5: i

If the control reaches the while instruction, the condition is evaluated and if the
condition is true, the instructions in Block 1 are executed and control comes back to the
while instruction again for checking the condition. If the condition evaluates to false when
the while instruction is executed, then control skips Block 1 and jumps to the instruction
after the } after Block 1.

6

The program for finding sum of four numbers by using a while loop is shown below.

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

When the statement while (i < 4) is executed, the current values of variable i and
4 are taken to the ALU and compared. If the condition evaluates to true , then the
instructions between the opening bracket { after the while instruction and its pairing
closing bracket } are to be executed and then the control returns to the while instruction
again to check the condition. This process of checking the condition and executing the
block between the opening bracket { after the while instruction and its pairing closing
bracket } is repeated, until the condition becomes false at the time of executing the while
instruction. When the condition evaluates to false when the while instruction is executed,
the program control jumps to the statement after the }.

The memory state diagrams during the execution of the above program for the inputs
10,15,18,20 is shown below.

junka

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

junk

junk

Figure 6: i

7

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

junk

junk

0

Figure 7: ii

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

0

junk

0

Figure 8: iii

8

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

0

junk

0

Figure 9: iv

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

0

10

0

Figure 10: v

9

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

0

10

10

Figure 11: vi

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

1

10

10

Figure 12: vii

10

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

1

10

10

Figure 13: viii

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

1

15

10

Figure 14: ix

11

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

1

15

25

Figure 15: x

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

2

15

25

Figure 16: xi

12

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

2

15

25

Figure 17: xii

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

2

18

25

Figure 18: xiii

13

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

2

18

43

Figure 19: xiv

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

3

18

43

Figure 20: xv

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

3

18

43

Figure 21: xvi

14

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

3

20

43

Figure 22: xvii

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

3

20

63

Figure 23: xviii

15

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

4

20

63

Figure 24: xix

a

sum

i

int a,sum,i

sum <-- 0

i <-- 0

while(i<4)

{

input a

sum <-- sum+a

i <-- i+1

}

output sum

4

20

63

Figure 25: xx

In C language, condition evaluation is done in a slightly different way. If the result
of a comparision is true, then the evaluation of the condition gets the value 1 and if the
result of a comparision is false, then the evaluation of the condition gets the value 0.
Moreover, instead of a condition, even an arithmetic expression can occur. In this case, if
the expression evaluates to non-zero value, it is considered equivalent to a true condition
and if the expression evaluates to 0, it is considered equivalent to false condition.

Another point to note is that in C, the symbol == is used for equality checking, whereas
the symbol = is reserved for assignment instructions (i.e., for assigning values to variables).

16

