(CS1100 - Lecture 14

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

Representation of Integers

There are many possible ways of represnting integer values. The representation we are
most familiar with, is known as the decimal number system. But there are many other
ways to represent integers. Many of us have also come across number systems like Roman
number system as well. A number system is called a positional value system, if the number
system has a fixed number b as base and the representation of any number requires only
b distinct symbols and each position in the representation of a number has a power of b
as its positional value. Roman number system is not a positional value system and that
makes it more difficult compared to the decimal system to directly add or multiply two
numbers represented using Roman number system. We will now look into some positional
value systems.

Decimal Number System

The decimal number system has exactly ten basic symbols, 0 to 9, with which all integers
can be represented. It is a positional value system and it has base value 10. Each position
from right to left has a weight asscociated with it, which is a power of the base value 10,
depending on the position of the digit. For example, in the decimal number 752, the
positional value of 2 is 10°, the positional value of 5 is 10! and the positional value of 7
is 102. Note that,

752 =7 x 10> + 5 x 10" +2 x 10°

In this representation, each power of 10 is the place value of the corresponding digit.

Binary Number System

The binary number system is the another positional value number system. This number
system has only two basic symbols 0 and 1 and the system has base 2. The symbols in
this numbers system is called bits.

Suppose we have a binary number

1 1 0 1 1 MSB: most significant bit

/ K LSB: Least significant bit
MSB LSB

In such a representation, the positional value of each bit is a power of 2. From the
right to left, value of each position increases as increasing powers of 2. The right most

bit is called the least significant bit and it has positional value 2°. The next bit from the
right has positional value 2! and so on.
The calculation of decimal equivalent of binary number 11011 is shown below.

11011, =1 x 2 +1x 22 4+0x 22+ 1x 2 +1x2°=164+8+0+2+ 1 =271

It is not difficult to see that any positive integer can be represnted using binary rep-
resenation. To convert a decimal number to binary, we will divide the number repeatedly
by 2 and collect the remainders in the reverse order. Please revisit Experiment 4 in Lab
Excercise Week 5 for converting a number from its decimal to binary represenation.

Hexa-decimal Number System

This number system has 16 symbols and it has the base value 16. In this number system
uses digits from 0 to 9 and alphabets A to F. In similar way as we did the conversion from
binary to decimal and vice versa, it is also possible to calculate the decimal equivalent
of hexa-decimal numbers and hexa-decimal equivalent of decimal numbers. Suppose we
have a hexa-decimal number 12F. The calculation of decimal equivalent of hexa-decimal
number 12F is shown as follows.

12F s =1 x 1624+ 2 x 16" + 15 x 16° = 256 + 32 + 15 = 3034

To convert a decimal number to hexa-decimal, divide the number repeatedly by 16 and
collect the remainders in the reverse order (in a similar way as we divided repeatedly by
2 and collected the remainders for converting from decimal to binary).

Octal Number System

The Octal number system has only symbols from 0 to 7. This is also a positional value
number system and it has the base value 8. As in case of binary and hexa decimal number
systems, finding the decimal equivalent to each octal number and vice vera are possible.
The calculation of decimal equivalent to the octal number 1357 is shown below.

1375 = 1 x 8 +3x 82+ 7x 8 +5x%x 8 =512+ 192 + 56 + 5 = 76519

Exercise (Binary to Octal and Hexa-decimal conversions)

1. Compute the binary represenation of 765,9. Compare this binary represenation with
the octal represenation of 7651 given above. Can you make out any relation between
the octal and the binary represenations? (Consider three bits at a time from the
right end of the binary represenation and compute the octal value represented by
each of these three bit blocks).

2. Given the binary represenation of some positive integer n, how can we convert it
into its corresponding octal represenation?

3. Given the octal represenation of some positive integer n, how can we convert it into
its corresponding binary represenation?

4. Compute the hexa-decimal represenation of 765;9. Compare this hexa-decimal rep-
resenation with the binary represenation of 7659 given above. Can you make out
any relation between the hexa-decimal and the binary represenations?

Representation of Integers in Computers

Since computers are made up of electronic devices like transistors and diodes, which
usually operate based on a high and a low input/output voltage levels, it is natural to
interpret a high voltage level as 1 and a low voltage level as 0. This makes the binary
number system the natural choice for representing numbers in present day computers.

Usually the unit to measure the storage of data in computers is known as bytes. A
byte is a collection 8 bits. The binary represenation of 27;pis 1 1 0 1 1 which requires
only 5 bits. If we want to represent it using 1 byte, it is enough to fill the first three
positions with 0s, since it will not affect the value. The following figure shows the 8§ bit(1
byte) binary representation of decimal number 270, as it is done in a computer.

If a computer uses 32 bits (4 bytes) to store an integer, it will store the decimal number
27 as shown in the figure below.

[olefofofofofo]o] [o[e[e]o[e]efe]e] [o]c]e[ofe oo o] [o]efo]*[+]o]1]1]

Signed Numbers

The common represenation used in computers to store signed numbers is the 2’s com-
plement represenation. In this represenation, the weight of the left most bit (MSB) is
negative. The following figure shows the 2’s complement represenation of a binary number
using k bits. The weights of each position is shown below the corresponding bit. Each

bp—2 | by_3

—(2b-1) gk 9k-3 o 92 ol 90

bit can be 0 or 1. The decimal value of the number represented above will be
bk—l X —(2k_1)+bk_2 X 2k_2+"'+b2 X 22+b1 X 21+b0 X 20

Note that, negative numbers will have their left most bit 1 and positive numbers will
have their left most bit 0.

The following figure shows the signed 2’s complement representation of the positive
number 27 using 8 bits.

Consider a signed binary number 1 0 0 1 1 0 1 1 which is assumed to be in a 2’s
complement represenation using 8 bits. The decimal equivalent of this number is

Ix—(2)+0x2040x2° +1x 2 +1x29 +0x22+1x2' +1x2%=—101y

Note that, the difference between the 2’s complement represenations of 27, and —101¢
is only in the left most bit. This is because, —101;9 = —128;¢ + 2719 and 128, = 2¢~1
where £ is the number of bits used in the represenation.

In general, if n is a positive number less than 27!, we get the 2’s complement repre-
senation of —(2*~! —n) by flipping the left most bit in the 2’s complement represenation
of n from 0 to 1. Or in other words, if p is a negative number, whose magnitude m is less
than or equal to 2¥~!, then the 2’s complement represenation of p can be obtained by
first taking the k-bit binary represenation of 25! — m and flipping the left most bit from
0 to 1.

Why 2’s complement represenation?

As human beings, 2’s complement represenation may seem difficult to understand. It
would have been easier for us if the 2’s complement represenation of —101;y can be
obtained by taking the 2’s complement represenation of +101;¢ and flip the left most bit.
Such a represenation is called the sign-magnitude represenation.

However, the computer represenation of numbers should be suitable for performing
arithmetic operations like addition and subtraction efficiently. When we are doing oper-
ations like adding a positive number with a negative number or subtracting one positive
number from another positive number, it turns out that 2’s complement represenation
allows the computations to be done more efficiently.

Example:

Suppose we have two numbers +27;5 and —27;9. The sum of these two numbers is 0. In
sign-magnitude form, the represenation of +27is0 0 0 1 1 0 1 1 and the represena-
tion of —27is1 0 0 1 1 0 1 1. Suppose we try to do an addition in a similar way as
we do addition of decimal numbers. We will first add the right most bits and record the
resultant bit and the carry bit (if any). The carry from the right most position will be
added with the second bit from the right of both the numbers and so on.

carry 1 1 1 1

+27 00011011

27 10011011

10110110

Since the result 1 0 1 1 0 1 1 0 is in sign-magnitude represenation, it corresponds
to the decimal value —54. This result will be wrong, because the expected result is 0.
Therefore, if we have to properly do addition in sign-magnitude represenation, the method
of addition has to be different. The way to do this turns out to be more complicated than
the method discussed above.

Now, consider adding 427 and —27 using 2’s complement represenation using the

method which we used above. The 2’s complement represenation of these numbers are
respectively 0 0 0 1 1 01 1and1 110010 1.

carry 11 1 1 1 11

+27 00011011

27 11100101

000000O00O0

Note that, the result is correct now.

