
CS1100 - Lecture 8

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

Break and Continue

Break and continue are control statements used to change the control flow inside a loop.

Break

A break statement is used to stop executing a loop. A break inside a nested loop exits
from the inner most loop. The control flow associated with a break instruction inside a
while loop is explained in the figure below.

while(condition 1)

{

if(condition 2)

{

break;

}

}

Block 1

Block 2

condition 1

condition 2

Block 1

Block 4

Block 3

True

False

False

Block 3

Block 4

Block 2

True

Note that, when condition2 is evaluated to true when the if statement inside the
while loop is executed, the loop is immediately exited and the control goes to Block 4,
eventhough condition 1 is still true. This is the difference between a while loop without a
break and a while loop with a break. Further, it is technically possible to have a break

1

statement without a preceeding if condition. But often that is useless because, the loop
is executed only once in such a case and the code inside the loop after the break (like
Block 3 in the figure) becomes a dead code which is never executed.

Remark: Note that, break instruction can be also used along with switch statements,
which we will learn later.

break instruction in nested loops

Note that, if a break instruction is inside a nested loop, then executing the break in-
struction will only force exiting from the inner loop which is currently getting executed
and not from an outer loop. This is explained in the figure below.

while(condition1)

{

Block 1

while(condition2)

{

Block 2

if(condition 3)

{

Block 3

break;

}

Block 4

}

Block 5

}

Block 6

condition 2

condition 3

Block 2

Block 5

Block 4

True

False

False

Block 3

True

condition 1

Block 1

True

Block 6

2

Array Search

Consider the problem of searching for a number in an array of n numbers. Question
no:4 of Exercise sheet 4 gives an outline of a program for solving this problem. However,
this program does some unnecessary work because, even after finding the position of the
searched number, it is again compared with all the remaining elements in the array. This
can be avoided using break. After finding the searched number once, the execution of the
loop can be stopped using a break instruction, so that no further comparisons are done
with remaining elements in the array. The modified program is given below.

int main()

{

int a[20], n, counter, num, posn;

printf("enter n (<=20) \n");

scanf("%d",&n);

posn=-1;

if(n>20)

{

printf("wrong input \n");

}

else

{

counter = 0;

while (counter < n)

{

printf("enter the next element \n");

scanf("%d",&a[counter]);

counter = counter +1;

}

printf("enter the number to search \n");

scanf("%d",&num);

counter = 0;

while (counter<n)

{

if(a[counter]==num)

{

posn=counter;

break;

}

counter = counter + 1;

}

if (posn==-1)

printf("searched number not found\n");

else

printf("searched number is the %dth item in the list\n", posn+1);

}

return 0;

}

3

Note that, if the searched number num matches with an element of the array in the
instruction if(a[counter]==num), the value of variable posn changes to the value of the
variable counter and immediately break from the loop happens. If the break is never
executed, it means a match never occured, and the value of the variable posn remains as
-1 till the end.

Primality Checking

Now, we will consider the problem of checking whether a given number n is prime or not.
Our method is the following. For each number i such that 1<i<n check if n is divisible
by i. If such a divisor is found, the number n is composite; otherwise, n is prime. This
can be done in a loop.

Note that, if we find one divisor i of n as above, we can immediately exit from the
loop using break without checking further. A program for primality checking using this
method is given below.

int main()

{

int i, n;

printf("enter a positive number to check for primality\n");

scanf("%d", &n);

if(n==1)

printf("%d is not a prime number\n", n);

else

{

i=2;

while(i < n)

{

if (n%i == 0) //we found a non-trivial divisor of n

{

printf("%d is not a prime\n", n);

break;

}

i=i+1;

}

if (i==n)

printf("Yes! %d is a prime!\n",n);

}

return(0);

}

Remark 1: This program can be optimised by checking values of i upto n/2 only,
because no nontrivial divisors of n are greater than n/2.

Remark 2: The above program can be further optimized by using the observation
that for any composite number at least one of its divisors (other than 1) will be less than
or equal to

√
n. However we will need to use libraries like math.h for this. Moreover, we

need to be careful about the lack of precision associated with floating point computations.

4

Continue

A continue statement is used only inside a loop. When a continue instruction is executed
inside a loop, it temporarily skips the rest of the instructions in the current iteration and
program control goes to the begining of the loop and starts the next iteration of a loop.
This is explained in the figure below.

while(condition 1)

{

if(condition 2)

{

continue;

}

}

Block 1

Block 2

condition 1

condition 2

Block 1

Block 4

Block 2

True

False

False

Block 3

Block 4

Block 3

True

Note that, as in the case of break, a continue instruction inside a nested loop affects
the control flow of only the inner loop in which the continue instruction is placed.

5

Logical Operators

C supports logical operators such as &&(AND), ||(OR) and !(NOT).
If expression1 and expression2 are two valid expressions, then the expression

expression1 && expression2 has value 1 if both expression1 and expression2 have
non-zero values; otherwise the value of expression1 && expression2 is 0.

If expression1 and expression2 are two valid expressions, then the expression
expression1 || expression2 has value 0 if both expression1 and expression2 have
value 0; otherwise the value of expression1 && expression2 is 1.

If expression1 is a valid expression, then the expression !expression1 has value 1
if expression1 has value 0; otherwise the value of !expression1 is 0.

Apart from the semantics mentioned above, we also need to take care of some subtle
facts while using these logical operators. This is explained in the section below.

Consider the nested if given below.

if(condition1)

{

if(condition2)

{

BLOCK1;

}

}

Here, BLOCK1 will be executed when both condition1 and condition2 becomes true.
This can also be implemented with a single if using the logical operator && as follows.

if(condition1 && condition2)

{

BLOCK1;

}

Only if both conditions are true Block 1 is executed. However, condition 1 is eval-
uated first and if it is false condition 2 is not evaluated.

Note that, this is not the same as the following.

if(condition2 && condition1)

{

BLOCK1;

}

The above version has the same meaning as the following.

if(condition2)

{

if(condition1)

{

BLOCK1;

}

}

6

In this case, condition 2 is evaluated first and if it is false condition 1 is not
evaluated.

A program to demonstrate the importance of ordering of conditions, when using &&
operator is given below.

#include<stdio.h>

int main()

{

int a[5], i;

i=0;

while(i<5)

{

a[i]=(i+1)*10;

i=i+1;

}

printf("crash test 1!!\n");

i=5000;

if (i<5 && a[i]<50)

{

a[i]=a[i]*10;

printf("%d",a[i]);

}

printf("crash test 1 passed!!\n");

printf("crash test 2!!\n");

i=5000;

if (a[i]<50 && i<5)

{

a[i]=a[i]*10;

printf("%d",a[i]);

}

printf("crash test 2 passed!!\n");

return(0);

}

This program outputs

crash test 1!!

crash test 1 passed!!

crash test 2!!

Segmentation fault (core dumped)

A programmer is unlikely to make a big mistake as above. However, something like
the following is a very common mistake. Assume that, a is defined to be an array of size
5 in the following example.

i=0;

while((a[i] < 60)&& (i<5))

{

printf("a[%d]=%d\n",i, a[i]);

7

i=i+1;

}

This program is likely to crash, because the condition a[5]<60 will be getting evalu-
ated, though, the last element in the array is a[4].

An if with conditions connected using || becomes true when either of them be-
comes true. As in the case of &&, the instructions if(condition1 || condition2) and
if(condition2 || condition1) are not the same. In the first case, condition1 is eval-
uated first and if it is true, condition2 is not evaluated further. But in the second case,
first condition2 is evaluated and if it is true, condition1 is not evaluated. In both the
cases, the second condition is evaluated only when the first evaluates to false.

In general, a complex condition made up of smaller conditions connected by logical
operators are evaluated only till the final answer of the complex condition is determined.
Moreover, note that the && operator has higher preceedence than the || operator. The !
operator has higher preceedence than both || and && operators.

8

