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Abstract

This thesis mainly focuses on algorithmic and combinatorial questions related
to some geometric problems on graphs. In the last part of this thesis, a graph
coloring problem is also discussed.

Boxicity and Cubicity: These are graph parameters dealing with geomet-
ric representations of graphs in higher dimensions. Both these parameters are
known to be NP-Hard to compute in general and are even hard to approximate
within an O(n1−ε) factor for any ε > 0, under standard complexity theoretic
assumptions.

We studied algorithmic questions for these problems, for certain graph
classes, to yield efficient algorithms or approximations. Our results include a
polynomial time constant factor approximation algorithm for computing the
cubicity of trees and a polynomial time constant (≤ 2.5) factor approximation
algorithm for computing the boxicity of circular arc graphs. As far as we know,
there were no constant factor approximation algorithms known previously, for
computing boxicity or cubicity of any well known graph class for which the
respective parameter value is unbounded.

We also obtained parameterized approximation algorithms for boxicity with
various edit distance parameters. An o(n) factor approximation algorithm
for computing the boxicity and cubicity of general graphs also evolved as an
interesting corollary of one of these parameterized algorithms. This seems to
be the first sub-linear factor approximation algorithm known for computing
the boxicity and cubicity of general graphs.

Planar grid-drawings of outerplanar graphs: A graph is outerplanar, if
it has a planar embedding with all its vertices lying on the outer face. We give
an efficient algorithm to 2-vertex-connect any connected outerplanar graph G
by adding more edges to it, in order to obtain a supergraph of G such that the
resultant graph is still outerplanar and its pathwidth is within a constant times
the pathwidth of G. This algorithm leads to a constant factor approximation
algorithm for computing minimum height planar straight line grid-drawings
of outerplanar graphs, extending the existing algorithm known for 2-vertex
connected outerplanar graphs.

iii



Maximum matchings in triangle distance Delaunay graphs: Delau-
nay graphs of point sets are well studied in Computational Geometry. Instead
of the Euclidean metric, if the Delaunay graph is defined with respect to the
convex distance function defined by an equilateral triangle, it is called a Trian-
gle Distance Delaunay graph. TD-Delaunay graphs are known to be equivalent
to geometric spanners called half-Θ6 graphs.

It is known that classical Delaunay graphs of point sets always contain a
near perfect matching, for non-degenerate point sets. We show that Triangle
Distance Delaunay graphs of a set of n points in general position will always
contain a matching of size

⌈
n−1

3

⌉
and this bound is tight. We also show that

Θ6 graphs, a class of supergraphs of half-Θ6 graphs, can have at most 5n− 11
edges, for point sets in general position.

Heterochromatic Paths in Edge Colored Graphs: Conditions on the
coloring to guarantee the existence of long heterochromatic paths in edge col-
ored graphs is a well explored problem in literature. The objective here is to
obtain a good lower bound for λ(G) - the length of a maximum heterochro-
matic path in an edge-colored graph G, in terms of ϑ(G) - the minimum color
degree of G under the given coloring. There are graph families for which
λ(G) = ϑ(G)− 1 under certain colorings, and it is conjectured that ϑ(G)− 1
is a tight lower bound for λ(G).

We show that if G has girth is at least 4 log2(ϑ(G))+2, then λ(G) ≥ ϑ(G)−
2. It is also proved that a weaker requirement that G just does not contain
four-cycles is enough to guarantee that λ(G) is at least ϑ(G)−o(ϑ(G)). Other
special cases considered include lower bounds for λ(G) in edge colored bipartite
graphs, triangle-free graphs and graphs without heterochromatic triangles.
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Chapter 1

Introduction

In this chapter, we give a brief introduction to the topics discussed in this
thesis and give an overview about the organization of this thesis. Detailed
descriptions of the respective topics are included in later chapters.

1.1 Boxicity and cubicity

Suppose each vertex of a graph G can be associated with an axis parallel box
in the d-dimensional Euclidean space so that two boxes intersect if and only if
the corresponding vertices are adjacent in G. Such a representation is called
a d-dimensional box representation of G. Boxicity of a graph G, denoted
by box(G), is the minimum dimension d for which G has a d-dimensional
box representation. If the axis-parallel boxes are further restricted to be d-
dimensional unit hypercubes, the corresponding parameter is called cubicity,
denoted by cub(G), and the corresponding intersection representation is called
a d-dimensional cube representation of G. (See Figure 1.1). Since a cube
representation is also a box representation, box(G) ≤ cub(G). By convention,
cubicity and boxicity of a complete graph are zero.

(a) (b) (c)

Figure 1.1: (a) A graph G on 5 vertices (b) a one-dimensional box representa-
tion of G (c) a two-dimensional cube representation of G.

1



2 Chapter 1. Introduction

Figure 1.2: A circular arc graph and its circular arc representation

In the special case when d = 1, a box (resp. cube) is just an interval (resp.
unit interval) on the real line. In this case, the graph is an intersection graph
of intervals (resp. unit intervals) and we call it an interval (resp. unit interval)
graph.

These parameters were introduced by F. S. Roberts [78] in 1968 for studying
some problems in Ecology. Knowing a low dimensional box representation
allows space efficient representation for dense graphs. Some well known NP-
hard problems like the max-clique problem becomes polynomial time solvable
[80], if a low dimensional box representation of the graph is known. Boxicity
is also studied in relation with other dimensional parameters of graphs like
partial order dimension and threshold dimension [4, 3, 98].

Boxicity and cubicity of a graph on n vertices are at most
⌊
n
2

⌋
and

⌈
2n
3

⌉
respectively [78]. Bounds of boxicity in terms of parameters like maximum
degree [46, 4], minimum vertex cover size [27] and tree-width [29] are known.
It was shown by Scheinerman [81] in 1984 that the boxicity of outer planar
graphs is at most two. In 1986, Thomassen [91] proved that the boxicity of
planar graphs is at most 3.

In polynomial time we can decide whether a graph G has boxicity (resp.
cubicity) one, because interval (resp. unit interval) graphs are recognizable
in polynomial time. However, given a graph G and an integer k, deciding
whether box(G) ≤ k (resp. cub(G) ≤ k) is NP-Hard, even when k = 2 or
k = 3 [38, 98, 64, 18]. Further, boxicity and cubicity are hard to approximate
in polynomial time: these are inapproximable within an O(n1−ε)-factor for any
ε > 0, unless NP = ZPP [25]. This hardness result holds for restricted graph
classes like bipartite, co-bipartite and split graphs as well. Even for special
classes of graphs, there were not many approximation algorithms known to
exist for these problems.

In Chapter 2, we discuss the boxicity of circular arc graphs - intersection
graphs of arcs on a circle. Figure 1.2 shows a circular arc graph and its
circular arc intersection representation. We show that if a circular arc graph
is co-bipartite, then its boxicity is computable in polynomial time. Using this
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result, we derive a polynomial time constant factor approximation algorithm
for computing the boxicity of circular arc graphs. Given any circular arc graph
G, this algorithm computes a box representation of G of dimension at most
2 box(G) + 1. Using this, a cube representation of G of dimension at most
2 cub(G) + log n is also derived in polynomial time.

In Chapter 3, we present a randomized algorithm that runs in polynomial
time and computes cube representations of trees, of dimension within a con-
stant factor of the optimum. If we do not insist for a cube representation,
then the cubicity of trees can be approximated within a constant factor in
polynomial time, without using any randomization.

In Chapter 4, we derive an O
(
n
√

log logn√
logn

)
factor approximation algorithm

for computing the boxicity of general graphs and an O
(
n(log logn)

3
2√

logn

)
factor

approximation algorithm for computing the cubicity of general graphs. These
algorithms are derived as corollaries of one of the parameterized approximation
algorithms for boxicity described in the same chapter. To our knowledge, these
are the first o(n) factor approximation algorithms for boxicity and cubicity of
general graphs.

We also give some parameterized approximation algorithms for cubicity in
this chapter.

1.2 Planar grid-drawings of outerplanar graphs
Computing planar straight line drawings of planar graphs, with their vertices
placed on a two dimensional grid, is a well known problem in graph drawing.
In Figure 1.3, a planar graph and its planar straight line grid drawing are
shown. In 1990, Schnyder [82] showed that any planar graph on n vertices has
a planar straight line drawing on an (n− 1)× (n− 1) sized grid.

Figure 1.3: A planar graph on 5 vertices and its straight line planar drawing
on a 4× 4 grid

A well studied optimization problem in this context is to minimize the
height (i.e. the smaller of the two dimensions) of the grid on which the drawing
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Figure 1.4: An outerplanar embedding of an outerplanar graph

is made. Pathwidth of a graph, a structural parameter widely used in graph
drawing and layout problems, is a lower bound for the height of the grid on
which the graph can be drawn. In general, the grid height required by a
planar graph is not necessarily upper bounded by a function of its pathwidth.
However, for some special cases, like that of trees, efficient algorithms that
compute a planar straight line drawing of the tree on a grid of height at most a
constant times its pathwidth is known; giving a constant factor approximation
for the optimization problem.

A graph G(V,E) is outerplanar, if it has a planar embedding with all its
vertices lying on the outer face. See Figure 1.4 for an example. Outerplanar
graphs form a superclass of trees. For 2-vertex-connected outerplanar graphs,
Biedl [14] obtained an algorithm that computes a planar straight line drawing
of the graph on a grid of height at most a constant times its pathwidth. It
was left as an open problem to extend this algorithm to work for arbitrary
outerplanar graphs. We address this problem in Chapter 5.

To solve this problem, it is enough to design an algorithm for adding edges
to a given outerplanar graphG to obtain a 2-vertex-connected supergraphG′ of
G that is still outerplanar and having pathwidth at most a constant times the
pathwidth of G. To obtain a planar straight line drawing of G, we just need to
compute a planar straight line drawing of G′ using Biedl’s algorithm and delete
the edges not originally present in G. Though bi-connecting a graph is easy,
simultaneously maintaining the outerplanarity and the pathwidth conditions
in the process is non-trivial. In Chapter 5, we give algorithm to do this in
O(n log n) time.
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1.3 Matchings in TD-Delaunay graphs -
Equilateral triangle matchings

A downward equilateral triangle is an equilateral triangle with one of its sides
parallel to the x-axis and the corner opposite to this side below the side parallel
to the x-axis. Given a point set P , the maximum 5-matching problem is to
compute a maximum cardinality family F of downward equilateral triangles
such that (i) no point from P belongs to more than one5 in F and (ii) exactly
two points from P lie inside each 5 in F . A point set and one of its maximum
5-matchings is shown in Figure 1.5. Similar questions with other geometric

(a) (b)

Figure 1.5: A point set P and a maximum 5-matching of P

shapes like circles or axis parallel rectangles instead of downward equilateral
triangles have been studied in literature [1, 41, 11].

In Chapter 6, we obtain a lower bound for the cardinality of maximum
5-matchings of point sets, in terms of the number of points. To do this, it is
convenient to map the problem into a graph theoretic setting, by defining an
associated geometric graph as follows. Given a point set P , define G5(P ) to
be a geometric graph with vertex set P such that any two vertices p and q are
adjacent if and only if there is some downward equilateral triangle containing
both p and q but no other point from P . (See Figure 1.6). It is not difficult
to see that the cardinality of a maximum 5-matching of P is the same as the
cardinality of a maximum matching in G5(P ). (Here, a maximum matching
in G5(P ) is a maximum cardinality subsetM of the edges of G5(P ) such that
no two edges in M share a common end-point.)

We prove some structural and geometric properties of the geometric graph
mentioned above. In our context, a point set P is said to be in general position,
if the line passing through any two points from P does not make angles 0◦,
60◦ or 120◦ with the horizontal. We show that for point sets P in general
position, G5(P ) always contains a matching of size at least

⌈
|P |−1

3

⌉
. We also

give examples of point sets for which this bound is tight.
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(a) (b)

Figure 1.6: A point set P and its G5(P ) graph. Edges of G5(P ) are shown
using thick lines.

For point sets in general position, the geometric graph we defined above is
equivalent to the well known Triangle Distance Delaunay graphs [15]. These
are also equivalent to a class of geometric spanners called half θ6 graphs [15].
Thus

⌈
|P |−1

3

⌉
becomes a tight lower bound for the cardinality of maximum

matchings in triangle distance Delaunay graphs. In contrast, classical Delau-
nay graphs for non-degenerate point sets are guaranteed to contain a matching
of size at least

⌊
|P |
2

⌋
[41].

In this chapter we also prove some structural properties of a related class
of geometric spanners called θ6 graphs.

1.4 Heterochromatic paths in edge colored
graphs

An edge coloring of graph is a mapping that assigns a color to each edge of the
graph. If a graph G has an edge coloring specified, we call G an edge colored
graph. The minimum color degree of an edge colored graph G, denoted by
ϑ(G), is the minimum number of distinct colors occurring at edges incident at

a
b

c

d
e

f

Figure 1.7: An edge colored graph. According to this coloring, the minimum
color degree is 3. The path a,b,c,d,e,f is a heterochromatic path of length 5
in G.
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any vertex v of G. (See Figure 1.7).
A subgraph H of an edge colored graph G is said to be heterochromatic

if edges of H are all distinctly colored. The conditions on the coloring to
guarantee the existence of heterochromatic Hamiltonian paths and cycles in
edge colored graphs are well studied in literature [59, 44, 8, 45]. A variant
of this problem is to obtain conditions that guarantee long heterochromatic
paths in edge colored graphs.

The relationship between the minimum color degree ϑ(G) of an edge colored
graph G and the length of its maximum length heterochromatic path λ(G) is
also well investigated [19, 32, 34, 39]. It is conjectured that for every edge
colored graph G, λ(G) ≥ ϑ(G) − 1 [32]. If this conjecture is true, ϑ(G) − 1
would be a tight lower bound for λ(G), since there are graph families for which
λ(G) = ϑ(G)− 1 under certain colorings.

In Chapter 7, we investigate this conjecture for graphs without small cycles.
We show that if G has no cycles of length smaller than 4 log2(ϑ(G)) + 2, then
λ(G) ≥ ϑ(G) − 2, which is only one less than the bound conjectured for the
general case. It is also proved that λ(G) is at least ϑ(G)−o(ϑ(G)), if a weaker
requirement that G just does not contain four-cycles holds.

Another result in Chapter 7 is an improved lower bound of λ(G) for edge
colored graphs not containing heterochromatic triangles in it. Other results
in this chapter include lower bounds for λ(G) in edge colored bipartite graphs
and triangle-free graphs. We also give a short and simple proof showing that
for any edge colored graph G, λ(G) ≥

⌈
2ϑ(G)

3

⌉
.
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Chapter 2

A constant factor
approximation algorithm for the
boxicity of circular arc graphs

In this chapter1, we consider the problem of approximating the
boxicity (resp. cubicity) of circular arc graphs - intersection graphs
of arcs of a circle. Circular arc graphs are known to have unbounded
boxicity, which could be as large as Ω(n). We give a

(
2 + 1

k

)
-factor

(resp.
(
2 + dlogne

k

)
-factor) polynomial time approximation algo-

rithm for computing the boxicity (resp. cubicity) of any circular
arc graph, where k is the value of the optimum solution. For nor-
mal circular arc (NCA) graphs, with an NCA model given, this
can be improved to an additive two approximation algorithm. The
time complexity of the algorithms to approximately compute the
boxicity (resp. cubicity) is O(mn+ n2) in both these cases, where
n is the number of vertices of the graph and m is its number of
edges. In O(mn + kn2) = O(n3) time we get their corresponding
box (resp. cube) representations. Our additive two approximation
algorithm directly works for any proper circular arc graph, since
their NCA models can be computed in polynomial time.

This seems to be the first result obtaining a polynomial time al-
gorithm with a sublinear approximation factor for computing box-
icity, of any well known graph class of unbounded boxicity.

1Joint work with Abhijin Adiga and L. Sunil Chandran. An initial version of this work
was presented in WADS 2011. A complete version is under revision in Discrete Applied
Mathematics.

9
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Figure 2.1: A graph and its 2-dimensional cube representation. The projections
to X and Y axes give two unit interval graphs.

2.1 Introduction
Let G(V , E) be a graph. Recall that in Section 1.1, we defined a d-dimensional
box (resp. cube) representation of G as a geometric representation where
each vertex is associated with an axis parallel box (resp. axis parallel unit
hypercube) in Rk so that two boxes (resp. hypercubes) intersect if and only if
the corresponding vertices are adjacent in G. It is easy to see that projecting
this geometric representation to any of the d coordinate axes gives an interval
(resp. unit interval) supergraph of G (see Figure 2.1). Moreover, if I1, I2, · · · ,
Id are these interval graphs, we have V (Ii) = V (G) for each 1 ≤ i ≤ d and
E(G) = E(I1) ∩ E(I2) ∩ · · · ∩ E(Id). Conversely, given interval (resp. unit
interval) supergraphs I1, I2, · · · , Id of G satisfying V (Ii) = V (G) for each
1 ≤ i ≤ d and E(G) = E(I1) ∩ E(I2) ∩ · · · ∩ E(Id), we can also construct a
d-dimensional box (cube) representation of G. This leads to a combinatorial
re-definition of the terms as follows.

Definition 2.1 (Box (resp. cube) representation [78]). If I1, I2, · · · , Ik are
interval graphs (resp. unit interval graphs) on the vertex set V (G) such that
E(G) = E(I1) ∩ E(I2) ∩ · · · ∩ E(Ik), then {I1, I2, · · · , Ik} is called a k-
dimensional box (resp. cube) representation of G.

Definition 2.2 (Boxicity (resp. Cubicity)[78]). The boxicity (resp. cubicity)
of G is the minimum integer k such that G has a k-dimensional box (resp.
cube) representation as given by Definition 2.1.

Given a graph G and an integer k, the decision problem BOXICITY (resp.
CUBICITY) asks whether box(G) ≤ k (resp. cub(G) ≤ k). In 1981, Cozzens
[38] showed that this problem is NP-hard. Later Yannakakis [98] proved that
deciding box(G) ≤ 3 itself is NP-complete. Kratochvil[64] showed that decid-
ing even box(G) ≤ 2 is NP-complete. In 2010, Adiga et al. [3] proved that no
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polynomial time algorithm for approximating the boxicity of bipartite graphs
with approximation factor O(n0.5−ε) is possible unless NP = ZPP. A very
recent work [25] improved this hardness result to O(n1−ε) factor. Same non-
approximability holds in the case of split graphs and co-bipartite graphs too.
Since the cubicity and the boxicity of a co-bipartite graph are always equal, no
polynomial time algorithm for approximating cubicity of co-bipartite graphs
with approximation factor O(n1−ε) is possible unless NP = ZPP.

The boxicity and cubicity of some special graph classes have been studied
earlier. It was shown by Scheinerman [81] in 1984 that the boxicity of outer
planar graphs is at most two. In 1986, Thomassen [91] proved that the boxicity
of planar graphs is at most 3. Recently, an alternate proof of the same result
was obtained by Felsner et al. [50]. Boxicity of special classes of graphs was
studied in [10, 77] too. Bounds for the cubicity of interval graphs were obtained
by Chandran et al. [28] and Adiga et al. [5]. Bhowmic et al. [12] obtained
bounds for the boxicity of circular arc graphs.

Circular arc (CA) graphs are intersection graphs of arcs on a circle. That is,
an arc of the circle is associated with each vertex and two vertices are adjacent
if and only if their corresponding arcs overlap. CA graphs became popular
in 1970’s with a series of papers from Tucker [94, 95]. A proper circular arc
(PCA) graph is a graph which has some CA representation in which no arc
is properly contained in another. A normal circular arc (NCA) graph is one
which has a CA representation in which there are no pairs of arcs together
covering the circumference of the entire circle. For a comprehensive survey on
CA graphs, refer to Lin et al. [66].

In this chapter, we study the boxicity and cubicity of circular arc graphs.
A fundamental difficulty while dealing with CA graphs in comparison with
interval graphs is the absence of Helly property: a set of pairwise intersecting
arcs need not share a common intersection point (whereas, a set of pairwise
intersecting intervals always has a common intersection point). Some of the
well known NP-complete problems like tree-width and path-width are known
to be polynomial time solvable in the case of CA graphs [87, 89]. However,
unlike interval graphs, problems like minimum vertex coloring [54] and branch-
width [71] remain NP-complete for CA graphs. We believe that BOXICITY
and CUBICITY belong to the second category. There exist circular arc graphs
of arbitrarily high boxicity, including the well known Robert’s graph (the com-
plement of a perfect matching on n vertices, with n even) which has boxicity
n
2 .

We consider the problem of approximating the boxicity (resp. cubicity) of
circular arc graphs. We give a polynomial time constant factor approximation
algorithm for computing the boxicity of circular arc graphs. A polynomial time
algorithm for approximating the cubicity of circular arc graphs is also obtained,
which gives a constant factor approximation up to an additive error of log n.
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This seems to be the first result obtaining a polynomial time algorithm with
a sublinear approximation factor for computing the boxicity (resp. cubicity)
of any well known graph class of unbounded boxicity.

Our main results in this chapter are:

(a) The boxicity of any circular arc graph can be approximated within a
(2 + 1

k
)-factor in polynomial time where k ≥ 1 is the boxicity of the

graph.

(b) The boxicity of any normal circular arc graph can be computed within
an additive error of two in polynomial time, given a normal circular
arc model of the graph. (Note that, for some important subclasses of
NCA graphs such as proper circular arc graphs, an NCA model can be
computed in polynomial time [86, 95].)

(c) Cubicity of any circular arc graph can be approximated within a(
2 + dlogne

k

)
-factor in polynomial time, where k ≥ 1 is the cubicity of the

graph and n is its number of vertices.

(d) The time complexity of the algorithms to approximately compute the
boxicity (resp. cubicity) is O(mn + n2) in all the above cases and in
O(mn + kn2) = O(n3) time we also get their corresponding box(cube)
representations, where n is the number of vertices, m is the number of
edges and k is the boxicity (resp. cubicity) of the given graph.

A structural result we obtained in this chapter may be of independent interest.
The following way of constructing an auxiliary graph H∗ of a given graph H
is from [2].

Definition 2.3. Given a graph H = (V , E), consider the graph H∗ con-
structed as follows: V (H∗) = {Γe | e ∈ E(H)}, and for any pair of edges wx
and yz of H, the corresponding vertices Γwx and Γyz of H∗ are adjacent if and
only if the induced subgraph of H on the vertex set {w, x, y, z} is a 2K2 i.e.
a matching of size two. (In other words, H∗ is the complement of [L(H)]2, the
square of the line graph L(H) of H.)

Structural properties of H∗ and its complement are often found useful in
relation with problems like largest induced matching problem and minimum
chain cover problem. A consolidation of these properties can be found in
Golumbic et al. [55] and Cameron et al. [23]. The following is an intermediate
structural result we obtained:

(e) In Lemma 2.14, we observe that if H is a bipartite graph whose comple-
ment is a CA graph, then H∗ is a comparability graph.

This is a generalization of similar results known for smaller classes like convex
bipartite graphs and interval bigraphs [2, 99]. This result helps us in reducing
the complexity of our polynomial time algorithms mentioned before.
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Organization of this chapter. In Section 2.2, we introduce the notations
used in this chapter. In Section 2.3, we derive a polynomial time algorithm
to compute optimum box representations for a subclass of circular arc graphs,
namely co-bipartite CA graphs. In Section 2.4, we describe a polynomial time
algorithm to compute a box representation of dimension at most two more
than the optimum, of any Normal CA graph, with its normal CA model given.
We do this by representing the input graph as the intersection of a co-bipartite
CA graph and an interval graph and then use the algorithm for co-bipartite
CA graphs as a subroutine.

In Section 2.5, we describe a polynomial time algorithm to construct a box
representation of any arbitrary CA graph G, of dimension at most 2 box(G)+1.
To do this, we first represent G as the intersection of a co-bipartite graph G0

and two interval graphs, derived from G. Exploiting a “nice” adjacency struc-
ture possessed by CA graphs, we then show that G0 is a co-bipartite CA graph,
and hence its optimal box representation can be computed in polynomial time.
Using the optimal box representation of G0, we construct the required box rep-
resentation of G.

In Section 2.6, we analyze some structural properties of co-bipartite CA
graphs and use them to reduce the time complexity of the algorithm obtained
in Section 2.3, for computing optimal box representations of co-bipartite CA
graphs. Since this algorithm is a subroutine in our remaining algorithms,
the time complexities of the remaining algorithms are also improved. In Sec-
tion 2.7, we use the algorithm of Section 2.5 and derive a polynomial time
algorithm to compute a cube representation of any CA graph G, of dimension
at most 2 cub(G) + dlog ne.

2.2 Notations used in this chapter
We denote the vertex set of a given graph G by V (G) and edge set by E(G).
We call a graph G as the union of graphs G1, G2, · · · , Gk if they are graphs
on the same vertex set and E(G) = E(G1) ∪ E(G2) ∪ · · · ∪ E(Gk). Similarly,
a graph G is the intersection of graphs G1, G2, · · · , Gk if they are graphs on
the same vertex set and E(G) = E(G1) ∩ E(G2) ∩ · · · ∩ E(Gk). We use χ(G)
to denote the chromatic number of G. If a vertex v is adjacent to every other
vertex in the graph, then we call it a universal vertex in the graph.

A circular-arc (CA) model M = (C, A) consists of a circle C, together
with a family A of arcs of C. It is assumed that C is always traversed in the
clockwise direction, unless stated otherwise. The arc Av corresponding to a
vertex v is denoted by [s(v), t(v)], where s(v) and t(v) are the extreme points
of Av on C with s(v) its start point and t(v) its end point respectively, in the
clockwise direction. Without loss of generality, we assume that no single arc
of A covers C and no arc is empty or a single point.
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An interval model I consists of a family of intervals on real line. An interval
Iv corresponding to a vertex v is denoted by a pair [lv(I), rv(I)], where lv(I)
and rv(I) are the left and right end points of the interval Iv. Without loss
of generality, we assume that an interval is always non-empty and is not a
single point. We may use I to represent both an interval graph and its interval
model, when the meaning is clear from the context.

2.3 Computing the boxicity of co-bipartite CA
graphs in polynomial time

A graph is called a co-bipartite CA graph if it is a circular arc graph and also
a co-bipartite graph (complement of a bipartite graph). Using some theorems
in the literature, we show that, if G is a co-bipartite CA graph, then the com-
putation of box(G) is equivalent to the computation of the chromatic number
of an associated perfect graph, which is polynomial time solvable.

A bipartite graph is chordal bipartite, if it does not contain any induced
cycle of length ≥ 6. The term edge-asteroid is used only in the statement of
the theorem below and we do not require this term later in this chapter.

Theorem 2.1 (Feder, Hell and Huang [47]). A graph G is a co-bipartite CA
graph if and only if its complement is chordal bipartite and contains no edge-
asteroids.

A bipartite graph is called a chain graph if it does not contain any induced
2K2 (a matching containing two edges). The minimum chain cover number of
G, denoted by ch(G), is the minimum number of chain subgraphs of G such
that the union of their edge sets is E(G).

Recall Definition 2.3 of H∗ from Section 2.1. If I is an independent set in
a graph G and I ′ is a maximal independent set in G such that I ′ ⊇ I, then
we say that I ′ is a maximal independent set obtained by extending I. The
following theorem is just a restatement of some results in Abueida et al. [2].

Theorem 2.2 (Abueida, Busch and Sritharan [2]). If H is a bipartite graph
with no induced cycles on exactly 6 vertices, then

1. ch(H) = χ(H∗).

2. Every maximal independent set of H∗ corresponds to the edge-set of a
chain subgraph of H. Moreover, the family of maximal independent sets
obtained by extending the color classes of an optimum coloring of H∗
corresponds to a minimum chain cover of H.

3. In the more restricted case where H is chordal bipartite, H∗ is a per-
fect graph and therefore, ch(H) and a chain cover of H of minimum
cardinality can be computed in polynomial time.
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Proof. The first two parts of this theorem directly follows from the proof2 of
Theorem 1 in Abueida et al. [2]. The third part of the theorem is a direct
consequence of Proposition 1 of the same paper together with the fact that H∗
is a perfect graph when H is chordal bipartite [2].

The following theorem directly follows from the proof2 of Lemma 5 in
Yannakakis [98].

Theorem 2.3 (Yannakakis [98]). Let G be the complement of a bipartite graph
H. Then, box(G) = ch(H). Further, if H1, H2, · · · , Hk are chain subgraphs
whose union is H, their respective complements G1, G2, · · · , Gk are interval
supergraphs of G whose intersection is G.

By Theorem 2.1, if G = H is a co-bipartite CA graph, then H is chordal
bipartite. Hence by Theorem 2.2, a chain cover of H of minimum cardinality
can be computed in polynomial time and ch(H) = χ(H∗). Combining this
with Theorem 2.3, we get:

Theorem 2.4. If G is a co-bipartite CA graph, then box(G) = χ(H∗) and the
family of maximal independent sets obtained by extending the color classes of an
optimum coloring of H∗ corresponds to the complements of interval supergraphs
in an optimal box representation of G. Moreover, box(G) and an optimal box
representation of G are computable in polynomial time.

Remark 2.1. It may be noted that G1, G2, · · · , Gk of Theorem 2.3 are not
just interval supergraphs of the co-bipartite CA graph G, but they are unit
interval graphs too [98]. Hence, cub(G) = box(G) and the box representation
we obtained in Theorem 2.4 is also an optimal cube representation of G.

2.4 An additive two approximation algorithm
for computing the boxicity of normal CA
graphs

In this section, we show how to compute a box representation of a normal CA
graph G of dimension at most box(G) + 2 in polynomial time, when a normal
CA modelM(C, A) of G is given. We do this by constructing three graphs G0,
G1 and G2 such that G0 is a co-bipartite CA graph with box(G0) ≤ box(G),
G1 and G2 are interval graphs, and G = G0∩G1∩G2. It will be clear from our
algorithm that G need not necessarily be a normal CA graph for our method
to work. The only property needed for our algorithm is the existence of two

2Though the statement of this theorem appears differently in its source, the proof given
in its source precisely proves the theorem in the way we have stated it.
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points p and q on the circle C, such that no arc in A passes through both p
and q.

In our proof, we make use of the fact that introducing universal vertices
does not affect the boxicity of a graph and if the graph was originally a co-
bipartite CA graph, it remains so after the modification.

Definition 2.4. Let G′(V ′, E ′) be a graph obtained by introducing some uni-
versal vertices into a graph G(V,E). That is, V ′ ⊇ V and E ′ = E ∪ {(a,
b) | a ∈ V ′ \ V and b ∈ V ′, a 6= b}. Then we call G′ to be an extension of G on
V ′.

Lemma 2.5. Let G′(V ′, E ′) be an extension of G(V,E) on V ′. If G has a
known box representation of dimension k, then in O(|V ′| · k) time we can
compute a box representation of G′ of dimension k. Moreover, if G is a co-
bipartite CA graph, so is G′.

Proof. Let B = {I1, I2, · · · , Ik} be a known box representation of G. For
1 ≤ i ≤ k, let li = min{lu(Ii) | u ∈ V } and ri = max{ru(Ii) | u ∈ V }. For
1 ≤ i ≤ k, define I ′i by assigning the interval [li, ri], ∀u ∈ V ′ \ V and intervals
[lu(Ii), ru(Ii)], ∀u ∈ V . By the definition of these intervals, in each I ′i, vertices
in V ′ \ V are universal and the adjacencies among vertices in V remains as
it was in Ii. Since B is a box representation of G, it can be easily verified
that G′ = I ′1 ∩ I ′2 ∩ · · · ∩ I ′k and hence B′ = {I ′1, I ′2, · · · , I ′k} is a valid box
representation of G′. The computation of B′ can be done in O(|V ′| · k) time.

If G was originally co-bipartite with V = A
⊎
B, and A and B are cliques,

then G′ remains co-bipartite with the vertex set V ′ partitioned into cliques
A′ = A ∪ (V ′ \ V ) and B′ = B. Suppose G was a CA graph with a CA model
M(C, A). Then, if we assign the circular arcs corresponding to the vertices in
V ′ \ V to be the entire circle C, it gives a CA model of G′. It is also possible
to locally modify these universal arcs in the next step, so that they have two
distinct endpoints, which are different from the end points of every other arc.
Hence, if G was a co-bipartite CA graph, G′ remains so.

Theorem 2.6. Let G(V,E) be a normal CA graph and let M(C, A) be a
normal CA model of G given. The boxicity of G can be approximated within
an additive error of two in O(mn+ n2) time and a box representation of G of
dimension at most box(G) + 2 can be computed in O(mn + kn2) time, where
m = |E(G)|, n = |V (G)| and k = box(G).

Proof. Let p be any arbitrary point on C. Let p1 be the farthest clockwise end
point of any arc passing through p and p2 be the farthest anticlockwise end
point of any arc passing through p. Since M(C, A) is a normal CA model,
there is no pair of arcs in A passing through p such that their union covers the
entire circle C. If we choose q to be any point on the arc [p1, p2] with q 6= p1,
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p2, it is easy to see that no arc in A will pass through both p and q. Let A
be the clique in G corresponding to the arcs in A passing through the point p
and B be the clique in G corresponding to the arcs in A passing through the
point q. By our observation that no arc in A passes through both p and q, we
get A ∩B = ∅.

Since A and B are cliques, G[A∪B], which is the induced subgraph of the
CA graph G on the vertex set A∪B, is a co-bipartite CA graph. Let G0(V,E0)
be the extension of G[A∪B] on V . The graph G0 is a supergraph of G, because
G0 is the extension of an induced subgraph of G on V (G). By Lemma 2.5, G0 is
also a co-bipartite CA graph and box(G0) ≤ box(G[A∪B]). Using the method
described in Section 2.3, we can compute an optimal box representation B0 of
G0 in polynomial time. Since G[A ∪B] is an induced subgraph of G, we have
box(G[A ∪B]) ≤ box(G) and hence, |B0| ≤ box(G[A ∪B]) ≤ box(G).

Let A and B be the cliques corresponding to the points p and q respectively,
as defined earlier. We define G1(V,E1) to be the extension of the induced
subgraph G[V \A] on V . Similarly, define G2(V,E2) to be the extension of the
induced subgraph G[V \B] on V .

We claim that G1 and G2 are interval graphs. Imagine the process of
removing all the arcs in A passing through p, and then cutting the circle C at
the point p. Then, imagine that we are opening up the cut cycle and stretching
it into a straight line, along with the arcs in A which have not been removed. It
is easy to see that this procedure gives an interval representation. Notice that,
the adjacencies among the unremoved arcs in A and the adjacencies among
corresponding intervals in the interval graph obtained after the stretching, are
the same. Since A corresponds to the set of arcs removed, this implies that the
interval graph obtained is the same as G[V \A]. The graph G1 is a supergraph
of G, since it is the extension of the induced subgraph G[V \ A] on V . Since
G[V \ A] is an interval graph, by Lemma 2.5 G1 is also an interval graph.
An interval representation of G[V \ A] is computable in linear time and by
Lemma 2.5 this can be extended to an interval representation of G1 in O(n)
time. In a similar way, in linear time we can compute an interval representation
of G2 also.

Now, we will show that G = G0∩G1∩G2. We already saw that G0, G1 and
G2 are supergraphs of G. Therefore, it is enough to prove that, if (u, v) /∈ E,
then (u, v) /∈ E0 ∩ E1 ∩ E2. Consider (u, v) /∈ E. Case (i) If u, v ∈ V \ A,
by construction of G1, (u, v) /∈ E1. Case (ii) If u, v ∈ V \B, by construction
of G2, (u, v) /∈ E2. Remember that A and B are cliques. Therefore, if both (i)
and (ii) are false, then one of {u, v} is in A and the other is in B, but (u, v)
is not an edge in G[A∪B]. In this case, since G0 is the extension of G[A∪B]
on V , (u, v) /∈ E0. Thus, G = G0 ∩G1 ∩G2.

Since B0 is a box representation of G0, (u, v) /∈ E0 if and only if (u, v) /∈
E(I) for some I ∈ B0. We saw that the computation of B0 can be done
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in polynomial time, where |B0| ≤ box(G). We also saw that G1, G2 are
interval graphs and their interval representations are computable in linear time.
Therefore, it immediately follows that B = B0 ∪ {G1} ∪ {G2} is a valid box
representation of G of dimension at most box(G)+2, computable in polynomial
time.

Using theorems 2.18 and 2.22, we will later show that box(G0) can be
computed in O(ξn + n2) time and an optimal box representation B0 of G0

can be computed in O(ξn + k0n
2) time, where n = |V (G0)| = |V (G)|, k0 =

box(G0) ≤ box(G) = k and ξ is a quantity which is at most the number of
edges between A and V \A in G0. From our definition of G0, we have ξ ≤ m.
Therefore, the time required for computing box(G0) and B0 are respectively
within O(mn + n2) and O(mn + kn2). From this, we can see that |B| can be
computed in O(mn+ n2) time and B can be computed in O(mn+ kn2) time,
since interval representations of G1 and G2 were computed in linear time.

In Theorem 2.6, we assumed that an NCA model of the graph is given.
This was required because recognizing NCA graphs in polynomial time is still
an open problem. We can observe that though the algorithm of this section is
given for normal CA graphs, it can be used for a wider class as stated below.

Theorem 2.7. If we are given a circular arc modelM(C, A) of G with a point
p′ on the circle C such that the set of arcs passing through p′ does not contain
a pair of arcs whose union is covering the entire circle (see eg. Figure 2.2(a)),
then we can approximate the boxicity of G within an additive error of two in
O(mn+ n2) time, where m = |E(G)| and n = |V (G)|.

Proof. In our proof of Theorem 2.6, instead of choosing p to be arbitrary, assign
p to be the point p′ (guaranteed to exist, by assumption). Such a point p′ can
be found in O(n2) time, if it exists. The rest of the algorithm is similar.

Figure 2.2(a) shows a circular arc model of a graph where Theorem 2.7
is applicable and Figure 2.2(b) shows a circular arc model of a graph where
Theorem 2.7 is not applicable. Though a representation, as required by Theo-
rem 2.7, need not exist in general, it does exist for many important subclasses
of CA graphs and can be constructed in polynomial time. For any proper
CA graph G, the construction of a normal CA (NCA) model of G from the
adjacency matrix of G, can be done in polynomial time [86, 95].

Corollary 2.8. The boxicity of any proper circular arc graph can be approxi-
mated within an additive error of two in polynomial time.
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Figure 2.2: (a) A CA model of a graph is shown, which is not an NCA model.
However, the set of arcs passing through point p′ of the circle does not contain
a pair of arcs whose union is covering the entire circle. (b) A CA model of a
graph is shown such that at any point p of the circle, the set of arcs passing
through p contain a pair of arcs whose union is covering the entire circle.

2.5 Constant factor approximation algorithm
for computing the boxicity of CA graphs

The algorithm of Section 2.4 can be used only when we can find a CA model
M(C, A) of G with two points p and q on the circle C, such that no arc
in A passes through both p and q. In this section, we give an algorithm
for computing a box representation of any CA graph G, of dimension at most
2 box(G)+1, in polynomial time. From the given CA graphG, in a very natural
way, we construct a co-bipartite graph G0 such that box(G0) ≤ 2 box(G) and
an interval graph G1, such that G = G0∩G1. Using some structural properties
of CA graphs, we then show that G0 is a co-bipartite CA graph and hence,
an optimal box representation B0 of G0 is computable in polynomial time,
using the method given in Section 2.3. Since G = G0 ∩ G1, and G1 is an
interval graph, B0 ∪ {G1} will be a box representation of G of dimension at
most 2 box(G) + 1.

We first describe the construction of supergraphs G0(V,E0) and G1(V,E1)
from the given CA graph G such that G = G0 ∩ G1. We can compute a CA
model M = (C, A) of G in linear time [72]. Let p be any point on the circle C
and A be the clique in G corresponding to the arcs in A which pass through p.
As in the proof of Theorem 2.6, G[V \ A] is an interval graph and its interval
representation can be computed in linear time. In the easy case, when A = ∅,
the graph G itself is an interval graph (box(G) ≤ 1) and we can compute its
optimal box representation in linear time. Therefore, we assume that this is
not the case.
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The graph G1(V,E1) is defined to be the extension of the interval graph
G[V \ A] on the vertex set V . By Lemma 2.5, G1 is an interval graph and
being the extension of an induced subgraph of G on V , G1 is a supergraph of
G as well. Moreover, the interval representation of G[V \ A] can be extended
to an interval representation of G1 in O(n) time.

To construct G0(V,E0) from G, we insert additional edges between vertices
in V \ A to make it a clique. That is, define E0 = E ∪ {(u, v) | u, v ∈
V \ A, u 6= v}. Since A was a clique in G to start with, we can see that G0 is
a co-bipartite graph. Since we have only put extra edges in its construction,
G0 is a supergraph of G.

Claim 2.8.1. Let G0 and G1 be the supergraphs of G, as defined above and let
B0 be a box representation of G0. Then, the graph G is the intersection of
graphs G0 and G1 (i.e. V (G) = V (G1) = V (G2) and E(G) = E(G0)∩E(G1))
and hence B0 ∪ {G1} is a valid box representation of G.

Proof. Since G0 and G1 are supergraphs of G, to prove that G = G0∩G1, it is
enough to show that, if (u, v) /∈ E, then (u, v) /∈ E0∩E1. Consider (u, v) /∈ E.
Remember that A is a clique in G. If one of {u, v} is in A and the other is in
V \A, by construction of G0, (u, v) is not an edge in G0. On the other hand,
if u, v ∈ V \ A, then, (u, v) is not an edge in G[V \ A], and since G1 is the
extension of G[V \ A] on V , (u, v) /∈ E1. Thus, G = G0 ∩G1.

Since B0 is a box representation of G0 and G = G0 ∩ G1, where G1 is an
interval graph, it is straightforward to conclude that B0 ∪ {G1} is a valid box
representation of G.

Claim 2.8.1 implies that if we can compute an optimal box representation
of G0, it can be used to get a box representation of G of dimension box(G0) +
1. However, this method will be useful in computing a near optimal box
representation of G, only if box(G0) is not too big compared to box(G). The
following general lemma shows that box(G0) ≤ 2 box(G). This lemma is an
adaptation of a similar one given in [3].

Lemma 2.9. Let G(V , E) be a graph with a partition (A,B) of its vertex
set V with A = {1, 2, · · · , n1} and B = {1′, 2′, · · · , n′2}. Let G0(V , E0)
be its supergraph such that E0 = E ∪ {(a′, b′) | a′, b′ ∈ B, a′ 6= b′}. Then,
box(G0) ≤ 2 box(G) and this bound is tight.

Proof. Let k be the boxicity of G and B = {I1, I2, · · · , Ik} be an optimal box
representation of G. For each 1 ≤ i ≤ k, let li = min{lu(Ii) | u ∈ V } and
ri = max{ru(Ii) | u ∈ V }. Let Ii1 be the interval graph obtained from Ii
by assigning the interval [lu(Ii), ru(Ii)], ∀u ∈ A and the interval [li, rv′(Ii)],
∀v′ ∈ B. Let Ii2 be the interval graph obtained from Ii by assigning the
interval

[
lu(Ii), ru(Ii)

]
, ∀u ∈ A and the interval

[
lv′(Ii), ri

]
, ∀v′ ∈ B.



2.5. An algorithm for approximating the boxicity of CA graphs 21

Note that, in constructing Ii1 and Ii2 we have only extended some of the
intervals of Ii and therefore, Ii1 and Ii2 are supergraphs of I and in turn of
G. By construction, B induces cliques in both Ii1 and Ii2 , and thus they are
supergraphs of G0 too.

We will show that E0 = ⋂k
i=1 E(Ii1) ∩ E(Ii2). Consider (u, v′) /∈ E0 with

u ∈ A, v′ ∈ B. This implies that (u, v′) /∈ E as well. Since B is a box
representation of G, for some 1 ≤ i ≤ k, we have (u, v′) /∈ E(Ii). This
implies that either rv′(Ii) < lu(Ii) or ru(Ii) < lv′(Ii). If rv′(Ii) < lu(Ii), then
clearly the intervals [li, rv′(Ii)] and [lu(Ii), ru(Ii)] do not intersect and thus
(u, v′) /∈ E(Ii1). Similarly, if ru(Ii) < lv′(Ii), then (u, v′) /∈ E(Ii2). If both
u, v ∈ A and (u, v) /∈ E0, then also (u, v) /∈ E. Then, ∃i such that (u,
v) /∈ E(Ii) for some 1 ≤ i ≤ k and clearly by construction, (u, v) /∈ E(Ii1) and
(u, v) /∈ E(Ii2).

It follows that G0 = ⋂k
i=1 Ii1 ∩ Ii2 and therefore, box(G0) ≤ 2 box(G). For a

simple tight example, let G be a graph on 2n vertices such that V (G) = A∪B
where A is a clique on n vertices and B is an independent set on n vertices and
the missing edges between A and B form a matching of size n. Trotter [93]
showed that box(G) is

⌈
n
2

⌉
. If we add edges making B into a clique to form G0,

then G0 is the same as a complete graph on 2n vertices from which a perfect
matching has been removed. It is well known that this graph has boxicity n
[93]. In this example, when n is even, we have box(G0) = 2 box(G).

By Lemma 2.9, an optimal box representation B0 will be of dimension at
most 2 box(G) and by Claim 2.8.1, this can be used to derive a box represen-
tation of G of dimension at most 2 box(G) + 1. In the remaining parts of this
section, we will show that an optimal box representation B0 of G0 can indeed
be computed in polynomial time, using the algorithm of Section 2.3, because
G0 is not just a co-bipartite graph but it is also a circular arc graph. For
proving that G0 is a co-bipartite CA graph, we will first prove some structural
properties of CA graphs.

We use the following definition subsequently, while describing some special
adjacency properties of CA graphs.

Definition 2.5 (Bi-consecutive adjacency property). Let the vertex set V (G)
of a graph G be partitioned into two sets A and B with |A| = n1 and |B| =
n2. A numbering scheme where vertices of A are numbered as 1, 2, · · · , n1

and vertices of B are numbered as 1′, 2′, · · · , n′2 satisfies the bi-consecutive
adjacency property between A and B, if the following condition holds:
For any i ∈ A and j′ ∈ B, if i is adjacent to j′, then either
(a) j′ is adjacent to all k such that 1 ≤ k ≤ i or
(b) i is adjacent to all k′ such that 1 ≤ k′ ≤ j′.
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Figure 2.3: Example for numbering of vertices of a CA graph

Lemma 2.10. Let G be a circular arc graph. Given a CA model M(C, A) of
G and a point p on the circle C, let A be the clique corresponding to the arcs
in A passing through the point p. Then,

1. We can define a numbering scheme NS(M , p) of vertices of G such that
it satisfies the bi-consecutive adjacency property between A and V \ A.

2. NS(M , p) can be computed in O(n2) time.

Proof. Let A be the clique corresponding to the arcs passing through p and let
B = V \A. Let |A| = n1 and |B| = n2. Number the vertices in A as 1, 2, · · · ,
n1 such that the vertex v with its t(v) farthest (in the clockwise direction) from
p gets number 1 and so on. Similarly, number the vertices in B as 1′, 2′, · · · ,
n′2 such that the vertex v′ with its t(v′) farthest (in the clockwise direction)
from p gets number 1′ and so on. In both cases, break ties (if any) between
vertices arbitrarily, while assigning numbers. See Figure 2.3 for an illustration
of the numbering scheme. Now, observe that in G, if a vertex i ∈ A is adjacent
to a vertex j′ ∈ B, then at least one of the following is true: (a) the point
t(i) is contained in the arc [s(j′), t(j′)] or (b) the point t(j′) is contained in
the arc [s(i), t(i)]. This implies that if i ∈ A is adjacent to j′ ∈ B, then either
(a) j′ is adjacent to all k such that 1 ≤ k ≤ i or (b) i is adjacent to all k′
such that 1 ≤ k′ ≤ j′. Thus the numbering scheme defined above, satisfies
bi-consecutive adjacency property between A and B = V \ A. Given the CA
model M(C, A), and a point p on C, this numbering scheme can be computed
in O(n2) time.

Claim 2.10.1. Let G0(V,E0) be the supergraph of G(V,E) constructed at the
beginning of this section. Consider the numbering scheme NS(M , p) of vertices
G, as obtained by Lemma 2.10. The same numbering of vertices will satisfy
the bi-consecutive adjacency property between A and V \A in the graph G0 as
well.
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Proof. Recall our construction of the supergraph G0(V,E0) of G(V,E). For
any pair of vertices i ∈ A and j′ ∈ V \A, (u, v′) ∈ E if and only if (u, v′) ∈ E0.
Since the numbering scheme NS(M , p) of vertices of G satisfies bi-consecutive
adjacency property between A and V \A by Lemma 2.10, and the edges across
A and V \ A are the same in both G and G0, the same numbering of vertices
will satisfy the bi-consecutive adjacency property between A and V \A in G0

as well.

Recall that G0 is constructed to be a co-bipartite graph, where A and
V \A are cliques. The following lemma explains how bi-consecutive adjacency
property between A and V \ A gives G0 the additional structure of being a
circular arc graph.

Lemma 2.11. Let G be a co-bipartite graph with a partitioning of vertex set
into cliques A and B = V \ A with |A| = n1 and |B| = n2. Suppose there
exist a numbering scheme of vertices of G which satisfies the bi-consecutive
adjacency property between A and B. Then G is a CA graph.

Proof. The proof is by construction of a CA model M(C, A) for G.
Step 1: Choose four distinct points a, b, c, d in the clockwise order on C.
Initially fix s(i) = a for all i ∈ A and s(j′) = c for all j′ ∈ B. Choose n1

distinct points pn1 , pn1−1, · · · , p1 in the clockwise order on the arc (a, b) and
set t(i) = pi for all i ∈ A. Choose n2 distinct points pn′2 , pn2−1′ , · · · , p1′ in
the clockwise order on the arc (c, d) and set t(j′) = pj′ for all j′ ∈ B. As of
now, the family of arcs that we have constructed represents two disjoint cliques
corresponding to A and B.
Step 2: Now we will modify the start points of each arc as follows: Consider
vertex i ∈ A. If j′ ∈ B is the highest numbered vertex in B such that i is
adjacent to all k′ with 1′ ≤ k′ ≤ j′, then set s(i) = t(j′) = pj′ . Similarly,
Consider vertex j′ ∈ B. If i ∈ A is the highest numbered vertex in A such
that j′ is adjacent to all k with 1 ≤ k ≤ i, then set s(j′) = t(i) = pi. Notice
that we are not making any adjacencies not present in G between vertices of
A and B in this step.

Since A and B are cliques, what remains to prove is that if a vertex i ∈ A
is adjacent to a vertex j′ ∈ B, their corresponding arcs overlap. Consider such
an edge (i, j′). If j′ is adjacent to all k such that 1 ≤ k ≤ i, we would have
extended s(j′) to meet t(i) in Step 2 above. If this does not occur, then by
assumed bi-consecutive adjacency property, i is adjacent to all k′ such that
1 ≤ k′ ≤ j′. In this case, we would have extended s(i) to meet t(j′) in Step 2.
In both cases, the arcs corresponding to vertices i and j′ overlap. We got a
CA model of G proving that G is a CA graph.

Remark 2.2. A different presentation of Lemma 2.11 and an independent
proof was obtained by Shrestha et al. [84], while studying a class of graphs called
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2-directional orthogonal ray graph (2DORG). Shrestha et al. [84] showed that a
bipartite graph G is a 2DORG if and only if its complement G is a co-bipartite
CA graph. They also showed that a bipartite graph G is a 2DORG if and only
if G satisfies a certain property called weakly orderability. It is easy to see that
the notions of weakly orderability of G and Bi-Consecutive Adjacency Property
of G coincide, giving an alternative proof of Lemma 2.11.

By Claim 2.10.1, a numbering scheme of vertices of the co-bipartite graph
G0 is computable in O(n2) time such that it satisfies the bi-consecutive adja-
cency property between cliques A and V \A in G0. By Lemma 2.11, this implies
that G0 is a co-bipartite CA graph. Hence, using the algorithm of Section 2.3,
we can compute an optimal box representation B0 in polynomial time. By
Lemma 2.9, |B0| ≤ 2 box(G). SinceG = G0∩G1, by Claim 2.8.1, B = B0∪{G1}
is a valid box representation of G of dimension |B0| + 1 ≤ 2 box(G) + 1. We
already saw that we can compute G1 and its interval representation in linear
time. Thus, B is a box representation of G of dimension at most 2 box(G) + 1
and it is computable in polynomial time.

As in the proof of Theorem 2.6, using Theorems 2.18 and 2.22 which will
be proved later, we can compute box(G0) in O(ξn+ n2) time and an optimal
box representation B0 of G0 can be computed in O(ξn+k0n

2) time, where n =
|V (G0)| = |V (G)|, k0 = box(G0) ≤ box(G) = k and ξ is a quantity which is at
most the number of edges between A and V \A in G0. From our definition of
G0, in this case also we have ξ ≤ m. Therefore, the time required for computing
box(G0) and B0 are respectively within O(mn+ n2) and O(mn+ kn2). From
this, we can see that |B| can be computed in O(mn + n2) time and B can be
computed in O(mn + kn2) time, since the interval representation of G1 was
computed in linear time. Thus, we have the following theorem.

Theorem 2.12. Let G be a CA graph. A
(
2 + 1

k

)
-factor approximation for

box(G) can be computed in O(mn+n2) time and a box representation of G of
dimension at most 2 box(G) + 1 can be computed in O(mn+ kn2) time, where
m = |E(G)|, n = |V (G)| and k = box(G).

2.6 Complexity of computing the boxicity and
optimal box representation of co-bipartite
CA graphs

In Section 2.3, we gave a polynomial time algorithm to compute an optimal box
representation of a co-bipartite CA graph. In this section, we will analyze the
time complexity of this algorithm and using some structural properties, show
how this method can be made more efficient. First, let us do a preliminary
analysis of our algorithm of Section 2.3.
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Let G(V , E) be a co-bipartite CA graph with |E| = m and |V | = n. Let
H = G. Recall that by Theorem 2.4, box(G) = χ(H∗). Let C1, C2, · · · , Ck
be the color classes in an optimal coloring of H∗. For 1 ≤ i ≤ k, let C ′i be
a maximal independent set containing Ci and Ei = {e ∈ E(H) | Γe ∈ C ′i}.
By Theorem 2.4, {Gi = Hi | Hi = (V,Ei), 1 ≤ i ≤ k} gives an optimal box
representation of G. Our aim is to reduce the complexity of computing an
optimal proper coloring of H∗, which is a crucial step in our algorithm. We
also require an efficient method to extend the color classes of H∗ to maximal
independent sets.

By Theorem 2.2, H∗ is a perfect graph. Let t be the number edges of
H or equivalently, the number of vertices in H∗. Using the standard perfect
graph coloring methods, χ(H∗) can be computed, as done in [2]. However,
this method takes O(t3) time, which could be as bad as O(n6) in the worst
case, where n is the number of vertices of G. In [2], for the restricted case
when H is an interval bigraph, they succeeded in reducing the complexity to
O(tn), using the zero partitioning property of the adjacency matrix of interval
bigraphs. Unfortunately, since the zero partitioning property is the defining
property of interval bigraphs, we cannot use the method used in [2] in our case,
because the complements of CA co-bipartite graphs form a strict superclass of
interval bigraphs [84]. Hence to bring down the complexity of the algorithm
from O(t3), we have to go for a new method.

2.6.1 An O(n4) time algorithm for computing χ(H∗)
Our method proceeds by computing a numbering of the vertices of G such that
bi-consecutive adjacency property is satisfied between the clique partitions of
G. This numbering scheme is then used to prove that H∗ is a comparability
graph and hence time required for computing an optimal proper coloring of
H∗ can be brought down to O(t2) = O(n4). Later, we will see that the same
numbering scheme can be used to reduce the time complexity of our algorithm
further.

The following property holds for any co-bipartite CA graph.

Lemma 2.13. If G(V , E) is a co-bipartite CA graph, then we can find a par-
tition A∪B of V where A and B induce cliques, having a numbering scheme of
the vertices of A and B such that it satisfies bi-consecutive adjacency property
between A and B. Moreover, the numbering scheme can be computed in O(n2)
time.

Proof. Let G be a co-bipartite CA graph. Recall that a circular arc model of
G is constructible in linear time [72]. In any circular arc model M(C, A) of a
co-bipartite CA graph G, there are two points p1 and p2 on the circle C such
that every arc passes through at least one of them [95, 66]. It is easy to see
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that these points can be identified in O(n2) time. Let the clique corresponding
to p1 be denoted as A. Let B = V \A, which is clearly a clique, since the arcs
corresponding to all vertices in B pass through p2. Let |A| = n1 and |B| = n2.
Then, by Lemma 2.10, we can compute a numbering scheme NS(M , p1) in
O(n2) time, such that the vertices of A are numbered 1, 2, · · · , n1 and vertices
of B are numbered 1′, 2′, · · · , n′2 and it satisfies bi-consecutive adjacency
property between A and B.

In order to show that H∗ is a comparability graph, we define a binary
relation on V (H∗).

Definition 2.6. Let A∪B be a partitioning of the vertex set V (G) as described
in Lemma 2.13, where A and B are cliques in G and A = {1, 2, · · · , n1} and
B = {1′, 2′, · · · , n′2} is the associated numbering of vertices. We define a
relation ≺ on E(H) as: ab′ ≺ cd′ if and only if a, c ∈ A, b′, d′ ∈ B with
a < c and b′ < d′ and {a, b′, c, d′} induces a 2K2 (i.e. a matching containing
two edges) in H. Correspondingly, we also define a relation ≺∗ on V (H∗) as:
Γab′ ≺∗ Γcd′ if and only if ab′ ≺ cd′.

From the definition of H∗ and the definition of ≺∗, it follows that if Γab′ ≺∗
Γcd′ , then Γab′ and Γcd′ are adjacent vertices in H∗. We claim that the converse
is also true.

Claim 2.13.1. If vertices Γab′ and Γcd′ are adjacent in H∗, then they are com-
parable with respect to the relation ≺∗.

Proof. Let Γab′ and Γcd′ be two adjacent vertices of H∗ corresponding to the
edges ab′ and cd′ of H where a, c ∈ A, b′, d′ ∈ B. From the definition of H∗,
it follows that {a, b′, c, d′} induces a 2K2 in H. Equivalently, these vertices
induce a 4-cycle in G with edges ac, cb′, b′d′ and d′a. We have either a < c or
c < a.

We claim that a < c if and only if b′ < d′. To see this, assume that a < c.
Since cb′ ∈ E(G), by the Bi-Consecutive property of the numbering scheme
(Lemma 2.10), if d′ < b′, cd′ ∈ E(G) or ab′ ∈ E(G), a contradiction. Hence,
b′ < d′. From this, it follows that if a < c, then ab′ ≺ cd′ and therefore, Γab′ ≺∗
Γcd′ . Using similar arguments, we can show that if c < a, then Γcd′ ≺∗ Γab′ .

Claim 2.13.2. The binary relation ≺∗ on V (H∗) is antisymmetric and transi-
tive.

Proof. It is clear from Definition 2.6 that the relations ≺ and ≺∗ are antisym-
metric.

To show that ≺∗ is transitive, let Γab′ ≺∗ Γcd′ and Γcd′ ≺∗ Γef ′ . From the
definition of ≺∗, the vertex set {a, b′, c, d′} induces a 2K2 in H with edges
ab′ and cd′. Equivalently the vertex set {a, b′, c, d′} induces 4-cycle in G with
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edges ac, cb′, b′d′ and d′a. Similarly, the vertex set {c, d′, e, f ′} induces a
4-cycle in G with edges ce, ed′, d′f ′ and f ′c. We also have a < c < e and
b′ < d′ < f ′, by the definition of the relation ≺∗. By the Bi-Consecutive
property of the numbering scheme (Lemma 2.10), cf ′ ∈ E(G) and cd′ /∈ E(G)
implies that af ′ ∈ E(G). Similarly, ed′ ∈ E(G) and cd′ /∈ E(G) implies that
eb′ ∈ E(G). Edges ae and b′f ′ are parts of cliques A and B. Hence, we have
an induced 4-cycle in G with edges ae, eb′, b′f ′ and f ′a. We can conclude that
ab′ ≺ ef ′ which implies Γab′ ≺∗ Γef ′ . Thus the relation ≺∗ is transitive.

A transitive orientation of edges of H∗. Consider any pair of adjacent
vertices Γab′ and Γcd′ of H∗. From Claim 2.13.1, we know that Γab′ and Γcd′
are comparable with respect to ≺∗ and by Claim 2.13.2, we know that ≺∗ is
antisymmetric. Based on the relation ≺∗, we can associate an orientation for
the edge in H∗ between the vertices Γab′ and Γcd′ as follows: If Γab′ ≺∗ Γcd′ ,
orient the edge from Γab′ to Γcd′ ; on the other hand if Γcd′ ≺∗ Γab′ , orient the
edge from Γcd′ to Γab′ .

It follows from Claim 2.13.2 that if each edge of H∗ is oriented in this
manner, we get a transitive orientation of H∗. The following lemma is a direct
consequence of this fact and is a generalization of similar results obtained in
[2, 99] for smaller graph classes.

Lemma 2.14. If the complement of graph H is a co-bipartite CA graph, then
H∗ is a comparability graph.

Since the number of edges in H∗ may be of O(t2), where t = |E(H)|, using
the standard algorithm for the vertex coloring of comparability graphs, we can
compute an optimal proper coloring of H∗ in O(t2) = O(n4) time. Since G was
any arbitrary co-bipartite CA graph to start with, we can make the following
inference:

Lemma 2.15. Minimum vertex coloring is polynomial time solvable for any
graph that is the square of the line graph of the complement of a co-bipartite
CA graph.

2.6.2 An improved algorithm for computing an optimal
proper coloring of H∗

Let t denote the number of edges of H, as earlier. Let m
AB

= n1n2 − t, the
number of edges between A and B in G. We call ab′ a non-edge of G, if it is an
edge of H. In this section, we utilize the structure of G along with the relation
≺ on the set of non-edges of G, and compute the boxicity of G in O(ξn+ n2)
time, where ξ is min(m

AB
, t). The improved running time is obtained by

a suitable implementation of the greedy algorithm for the vertex coloring of
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comparability graphs, fine tuned for this special case, and its careful amortized
analysis. Due to the structural differences with interval bigraphs as explained
before, this turns out to be much different from the method used in [2].

A greedy algorithm for optimally coloring comparability graphs.
There is a well-known greedy algorithm to compute an optimal coloring of
comparability graphs (for reference, see e.g. [68]). We make a note of some
relevant points of that algorithm here. A topological ordering < of a directed
graph is a linear order of its vertices such that if an edge uv is oriented from
u to v, then u < v. If the graph is a comparability graph, then the associated
transitive orientation is always acyclic and a topological ordering respecting
the transitive orientation always exists. The greedy algorithm for coloring the
comparability graph with colors 1, 2, . . . , is the following: Consider the vertices
of the comparability graph in a topological order that respects its transitive
orientation. Color the first vertex in the order with color 1 and at each vertex
v, color v with the minimum color not used by any neighbor of v that is already
colored before coloring v. This algorithm produces an optimum coloring of the
comparability graph.

A topological ordering that respects the transitive orientation of H∗.
In Section 2.6.1, we saw that for any pair of vertices Γab′ and Γcd′ of H∗, Γab′
and Γcd′ are comparable with respect to the relation ≺∗ if and only if they are
adjacent in H∗. From the transitive orientation given to the edges of H∗ and
the definition of ≺∗, it is straightforward to see that any linear extension of ≺∗
is a topological ordering that respects the transitive orientation of H∗ and any
linear ordering of vertices of H∗ that ensures that whenever a < c, the vertex
Γab′ appears in the linear order before the vertex Γcd′ will serve as a linear
extension of ≺∗. This leads to the following observation, using the description
in the paragraph above.

Observation 2.1. In order to get an optimal coloring of H∗, it is enough to
greedily color the vertices of H∗ according to a linear order such that whenever
a < c, the vertex Γab′ appears in this linear order before the vertex Γcd′.

We use the method suggested above, for producing an optimal coloring of
H∗. According to the greedy coloring strategy, while coloring a vertex Γxy′ of
H∗, we need to use the minimum color not used by any neighbor of Γxy′ that is
already colored before coloring Γxy′ . However, while coloring Γxy′ , its neighbor
Γab′ is already colored if and only if Γab′ ≺∗ Γxy′ . Moreover, we also know that
if Γab′ ≺∗ Γxy′ , then Γab′ and Γxy′ are adjacent in H∗. Therefore, while coloring
a vertex Γxy′ , the set of already colored neighbors of a vertex Γxy′ is {Γab′ ∈
V (H∗) | Γab′ ≺∗ Γxy′}. Therefore, for coloring each vertex Γxy′ of H∗, the color
used for greedy coloring is given by 1 + max{Color(Γab′) | Γab′ ≺∗ Γxy′}, where
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the maximum taken over the empty set is assumed to be zero. Our task is to
implement this coloring efficiently.

A note to the reader. If the reader is not interested to know the details of
the implementation of the algorithm, (s)he may take a note of Theorem 2.18
and Theorem 2.22 and skip forward directly to Section 2.7.

Re-formulating the coloring of H∗ in terms of coloring of non-edges
of G. Since V (H∗) = {Γe | e ∈ E(H)}, a coloring of vertices of H∗ can
be thought of as an equivalent coloring of non-edges of G. Note that, by the
definition of H∗, a proper coloring of the vertices of H∗ is equivalent to a
coloring of the edges of H (i.e. non-edges of G) such that no two edges get
the same color if their end points induce a 2K2 in H or equivalently a 4 cycle
in G. Since it makes our presentation easier, we describe the vertex coloring
algorithm of H∗ in terms of its equivalent coloring of non-edges of G.

Some basic data structures. Recall that A ∪B is a partitioning of V (G)
where A and B induce cliques, with A = {1, 2, . . . , n1} and B = {1′, 2′, . . . , n′2}
such that the numbering satisfies the bi-consecutive adjacency property be-
tween A and B. The following definitions are with respect to G. For X ⊆ V ,
let N

X
(v) represent the set of neighbors of v in X and N̂

X
(v) = X \ N

X
(v).

For S ⊆ V , N
X

(S) = ⋃
v∈S NX

(v) and N̂
X

(S) = ⋃
v∈S N̂X

(v). Let deg
X

(v)
denote |N

X
(v)|. The linked lists corresponding to N

B
(v) and N̂

B
(v) for each

v ∈ A and N
A

(v′) and N̂
A

(v′) for each v′ ∈ B, with their entries sorted with
respect to the numbering scheme described above, can be constructed from the
adjacency list of G. This can be done in overall O(n2) time. We will assume
that lists N

A
, N̂

A
, N

B
, N̂

B
are global data structures. In the remaining parts

of this section, we assume that the maximum taken over an empty set is zero.

The coloring algorithm. Assume that the colors available are 1, 2, · · · .
Notice that, if xy′ and xz′ are two non-edges of G incident at a vertex x ∈ A,
then xy′ and xz′ are mutually incomparable under ≺ and the relative order
of coloring them is immaterial for the coloring produced using the method
suggested by Observation 2.1. Therefore, to implement this method, it is
safe to split the coloring algorithm into |A| = n1 stages such that for each
1 ≤ i ≤ n1 − 1, stage i is followed by stage i + 1 and for 1 ≤ i ≤ n1, all the
non-edges xy′ of G with x = i are colored in stage i.

Our coloring algorithm considers x = 1, 2, · · · , n1 in that order and invokes
Algorithm 1 in order to color the non-edges of G incident at x ∈ A using the
color suggested by the greedy strategy. For the convenience of our analysis,
we refer to an invocation of Algorithm 1 for vertex x as the processing of x.
The non-edges incident at x are colored only during the processing of x and
once the processing of x is finished they never get recolored.
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Before getting into the finer details of Algorithm 1, we will try to under-
stand the objective of Algorithm 1 a bit closely. Let xy′ be a non-edge in G
incident at x. Consider a non-edge tu′ such that tu′ ≺ xy′. By the definition
of ≺, we have t < x and therefore, the processing of vertex t is finished before
we started processing x. Therefore, we have the following observation.

Observation 2.2. Let xy′ be a non-edge in G incident at x. When the pro-
cessing of x is about to begin, all non-edges tu′ of G such that tu′ ≺ xy′ are
already colored and they will not be recolored in future.

By Observation 2.1 and Observation 2.2, to produce an optimal coloring
it suffices to ensure that when the processing of x finishes, the non-edge xy′
is assigned the color suggested by the greedy strategy. Consider a non-edge
xy′ of G. Let Fxy′ = Fy′ = {ab′ ∈ E(H) | ab′ ≺ xy′} and maxcolor(Fy′) =
max{Color(ab′) | ab′ ∈ Fy′}. From our discussions so far, we know that the
color suggested by the greedy strategy for the non-edge xy′ ismaxcolor(Fy′)+1.

Therefore, our task involved in the processing of x reduces to efficiently
compute maxcolor(Fy′) + 1, for all non-edges xy′ incident at x, using Algo-
rithm 1. To understand how Algorithm 1 does this, let us first look at the set
Fy′ a bit more closely. Let P = {a ∈ N

A
(N̂

B
(x)) | a < x}, i.e., P is a subset of

A consisting of the vertices that are smaller than x and are neighbors of some
non-neighbor of x in B. Let Q = {b′ ∈ N

B
(x) | b′ < min N̂

B
(x)}, i.e., Q is a

subset of B consisting of the neighbors of x whose number is smaller than the
minimum numbered non-neighbor of x in B.

Claim 2.15.1. Fy′ = ⊎
a∈N

A
(y′)∩P{ab′ ∈ E(H) | b′ ∈ Q} = {ab′ ∈ E(H) | a ∈

N
A

(y′) ∩ P and b′ ∈ Q}.

Proof. Since Fy′ = {ab′ ∈ E(H) | ab′ ≺ xy′}, we need to show that for any
ab′ ∈ E(H), ab′ ≺ xy′ if and only if a ∈ N

A
(y′) ∩ P and b′ ∈ Q. Recall that

ab′ ≺ xy′ if and only if a < x, b′ < y′ and {a, b′, x, y′} induces a 4-cycle in
G. Observe that N

A
(y′) ∩ P = {a ∈ N

A
(y′) | a < x}. It is easy to see that, if

ab′ ∈ E(H) with a ∈ N
A

(y′) ∩ P and b′ ∈ Q, then ab′ ≺ xy′.
To prove the other direction, assume that ab′ ≺ xy′. Then we have a ∈

N
A

(y′), a < x and therefore, a ∈ N
A

(y′) ∩ P . Similarly, b′ ∈ N
B

(x), b′ < y′.
Since b′ is a neighbor of x, we know that min N̂

B
(x) 6= b′. Suppose min N̂

B
(x) <

b′. Since the numbering scheme satisfies bi-consecutive adjacency property,
xb′ ∈ E(G) implies that either (x,min N̂

B
(x)) ∈ E(G) or ab′ ∈ E(G), which is

a contradiction. Therefore b′ < min N̂
B

(x) and therefore, b′ ∈ Q.

By the above claim, we have

maxcolor(Fy′) = max
a∈N

A
(y′)∩P

{ max
b′∈Q,ab′∈E(H)

{Color(ab′)}}

But, if we have to do this computation separately for each y′ ∈ N̂
B

(x), then
for any a ∈ P which is in N

A
(y′) of more than one y′, the computation of
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Figure 2.4: Basic data structures used in Algorithm 1 and Algorithm 2. For
1 ≤ i ≤ n1, AP [i] = 1 if and only if i ∈ P ⊆ A. Sets Q and R are subsets of
B and are represented as doubly linked lists. For each q′ ∈ Q, the linked list
N̂
A

(q′) is sorted in the ascending order. Similarly, for each r′ ∈ R, the linked
list N

A
(r′) is sorted in the ascending order.

maxcolor(a) = max{Color(ab′) | b′ ∈ Q, ab′ ∈ E(H)} has to be repeated. To
avoid this repetition, Algorithm 1 first computes maxcolor(a) + 1 for each a ∈
P and then uses these values while computing maxcolor(Fy′), for y′ ∈ N̂B

(x).
Here is a simple description of Algorithm 1. To make it easier to follow

this description, the reader may refer to Figure 2.4.

• Type 0 work (Lines 1 to 3): Here we do some initializations. Recall the
definitions of P and Q. The algorithm computes Q and R = N̂

B
(x) and

also computes an indicator array AP of P such that AP [a] = 1 if a ∈ P
and is zero otherwise. The lists Q and R can be represented as doubly
linked lists. For each b′ ∈ Q, a pointer ptr1[b′] is initialized to point to
the start of the linked list N̂

A
(b′). For each r′ ∈ R, a pointer ptr2[r′] is

initialized to point to the start of the linked list N
A

(r′) and Color(xr′)
is initialized to one. For each p ∈ P , color[p] is initialized to one.

• Type 1 work (Lines 6 to 12 performed for elements of P considered
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according to their ascending order): By these lines, for each p ∈ P the
algorithm sets color[p] = maxcolor(p) + 1. To achieve this, for each q′ ∈
Q such that p ∈ N̂

A
(q′), the algorithm updates color[p] = Color(pq′)+1,

in case color[p] < Color(pq′) + 1.
For checking whether p ∈ N̂

A
(q′), the algorithm traverses the sorted list

N̂
A

(q′) in the forward direction by repeatedly updating ptr1[q′] from its
current position until it points to the next element which is greater than
or equal to p, if such an element exists. If no such element exists in
N̂
A

(q′), the pointer ptr1[q′] reaches the end of the list N̂
A

(q′). In that
case, the element q′ is deleted from Q to make sure that no more Type 1
work is done on q′ ∈ Q or the list N̂

A
(q′) for elements of P considered in

future. Note that, for each q′ ∈ Q, the list N̂
A

(q′) is traversed only once
during one invocation of Algorithm 1.

• Type 2 work (Lines 13 to 19 performed for elements of P considered
according to their ascending order): By these lines, for each r′ ∈ N̂

B
(x)

the algorithm computes maxcolor(Fr′) + 1 using the values of color[p] =
maxcolor(p) + 1 already computed as part of Type 1 work and assigns
Color(xr′) = maxcolor(Fr′) +1. To achieve this, for each r′ ∈ R such
that p ∈ N

A
(r′), the algorithm updates Color(xr′) = color[p], in case

Color(xr′) < color[p]. Thus, each non-edge xr′ incident at x gets the
color which is the same as the color suggested by the greedy coloring.
For checking whether p ∈ N

A
(r′) the algorithm traverses the sorted list

N
A

(r′) by updating ptr2[r′]. This is done in a similar way as we operated
with ptr1[q′] for doing the Type 1 work. This ensures that for each
r′ ∈ R, the list N

A
(r′) is traversed only once during one invocation of

Algorithm 1.

Thus, by invoking Algorithm 1 for each vertex x ∈ A, according to the increas-
ing order of the numbers assigned to vertices in A, each non-edge of G gets
the color required by the greedy coloring. As explained earlier in this section,
this implies the following.

Lemma 2.16. Invoking Algorithm 1 for each vertex x ∈ A, according to the
increasing order of the numbers assigned to vertices in A, gives an optimal
proper coloring of vertices of H∗.

Lemma 2.17. Time spent over all invocations of Algorithm 1 is O(ξn+ n2).

Proof. The algorithm is invoked once for each vertex x ∈ A. Recall that
m

AB
= |{ab′ ∈ E(G) | a ∈ A and b′ ∈ B}|, t = n1n2 − m

AB
= |E(G)| and

ξ = min(m
AB
, t).

Type 0 work (Lines 1 to 3): Initializations in Line 1 can be achieved in
O(ξn+ n2) time as follows. AP can be initialized to zero in O(n) time during
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Algorithm 1: Computing colors of non-edges incident on vertex x ∈ A
Input: x ∈ A
Output: Color(xy′) for each y′ ∈ N̂

B
(x)

/* Type 0 work : Lines 1 to 3 - Initializations */
/* Let P = {a ∈ N

A
(N̂

B
(x)) | a < x} */

1 For 1 ≤ a ≤ n1, let AP [a] = 0 initially. For each a ∈ P , set AP [a] = 1
and color[a] = 1

2 Compute Q = {b′ ∈ N
B

(x) | b′ < p′}, where p′ = min (N̂
B

(x)), which is
the first element of N̂

B
(x). For each b′ ∈ Q, initialize ptr1[b′] = NULL if

N̂
A

(b′) = ∅, and ptr1[b′] = start of N̂
A

(b′) otherwise
3 Assign R = N̂

B
(x) and for each r′ ∈ R initialize Color(xr′) = 1 and

initialize ptr2[r′] = NULL if N
A

(r′) = ∅ and ptr2[r′] = start of N
A

(r′)
otherwise

4 for cur = 1 to n1 do
5 if AP [cur] = 1 then

/* Type 1 work : Lines 6 to 12 - Computing
color[cur] = 1+ the maximum color given to a non-edge
between cur and Q */

6 for each q′ in Q do
7 while ptr1[q′] is not NULL and N̂

A
(q′)[ptr1[q′]] < cur do

8 Increment the pointer ptr1[q′] /* ptr1[q′] becomes NULL
if it is incremented past the last element in
N̂
A

(q′) */

9 if ptr1[q′] is NULL then
10 delete q′ from Q

11 else if N̂
A

(q′)[ptr1[q′]] = cur then
12 color[cur] = max(color[cur], Color(cur q′) + 1)

/* non-edge (cur q′) is already colored */

/* Type 2 work : Lines 13 to 19 - Identify non-edges
at x affected by non-edges between cur and Q and
update their colors if necessary */

13 for each r′ in R do
14 while ptr2[r′] is not NULL and N

A
(r′)[ptr2[r′]] < cur do

15 Increment the pointer ptr2[r′] /* ptr2[r′] becomes NULL
if it is incremented past the last element in
N
A

(r′) */

16 if ptr2[r′] is NULL then
17 delete r′ from R

18 else if N
A

(r′)[ptr2[r′]] = cur then
19 if Color(xr′) < color[cur] then Color(xr′) = color[cur]
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the processing of each x ∈ A. The total time for this work is O(n2), over all
invocations of Algorithm 1. Recall that P = {a ∈ N

A
(N̂

B
(x)) | a < x}. We

are not computing the set P explicitly in Algorithm 1. The initialization of
non-zero entries of AP in Line 1 can be implemented in the following way:
Checking whether N̂

B
(x) is empty during the processing of an x ∈ A can be

done in unit time, requiring O(n) time over all invocations of Algorithm 1. If
N̂
B

(x) is not empty, then for each y′ ∈ N̂
B

(x), traverse the list N
A

(y′) and for
each a ∈ N

A
(y′) set AP [a] = 1, if a < x. We split the time required for this into

two. To detect that the end of the list N̂
B

(x) is reached requires only unit time
per x ∈ A, which amounts to O(n) time over all invocations of Algorithm 1.
The remaining time is spent in actually traversing the list N

A
(y′) for each y′ ∈

N̂
B

(x) and setting AP [a] = 1 for each a ∈ N
A

(y′) with a < x. For calculating
the time required for this, we think from the perspective of y′: Compute the
time spent by y′ over all the invocations of the algorithm and sum this up over
all elements y′ ∈ B. A vertex y′ ∈ B can account for setting AP [a] = 1 for
every a ∈ N

A
(y′) when the list N

A
(y′) is traversed and this happens during the

processing of each x ∈ A such that y′ ∈ N̂
B

(x) or in other words during the
processing of x ∈ A such that x ∈ N̂

A
(y′). Note that if x /∈ N̂

A
(y′), the vertex

y′ is not involved in this initialization work during the processing of x. Thus,
there are |{x ∈ N̂

A
(y′)}| = n1 − deg

A
(y′) invocations of Algorithm 1 during

which y′ does this work and in each such invocation, y′ does |N
A

(y′)| = deg
A

(y′)
initializations and an additional one unit of time is required to detect that the
end of the list N

A
(y′) is reached. Therefore, counting together all invocations

of Algorithm 1, the total time spent by elements of B for this initialization
is ∑y′∈B (deg

A
(y′) + 1)(n1 − degA(y′)) = O(n + nmin(m

AB
, t)) = O(n + ξn).

During the processing of x, the initialization of the doubly linked list Q and the
pointers in Line 2 can be done in O(deg

B
(x)) time. Summing over all x ∈ A,

this amounts to O(m
AB

) = O(m) time, over all invocations. For initializing the
doubly linked list R and the pointers in Line 3, we need O(n2− degB(x)) time
during the processing of x. Summed over all x ∈ A, this amounts to O(t) time
over all invocations of the algorithm. Adding all the above, total time spent on
Type 0 work (over all invocations of Algorithm 1) is O(n+ ξn+n2 +m+ t) =
O(ξn+ n2), since m+ t = O(n2).

Type 1 work (Lines 6 to 12): To make it easier to follow the algorithm,
Line 6 is written as a for-loop. But to implement this efficiently, we consider
that a pointer is used for storing the current traversal position in the doubly
linked list Q and this pointer is made to point to the next element in Q each
time this step is executed.

Let us calculate the time spent in Type 1 work. Recall that Q ⊆ N
B

(x).
Therefore, if q′ /∈ N

B
(x), then during the processing of x, there is no Type 1

work associated with q′. When q′ ∈ Q, the algorithm remembers the traversal
position in the linked list N̂

A
(q′) using ptr1[q′]. This means that ptr1[q′] con-
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tinues from where it stopped in the current iteration, while doing the Type 1
work of the next element of P . Therefore, the pointer ptr1[q′] moves at most
n1 − degA(q′) times for each q′ ∈ Q ⊆ N

B
(x). When ptr1[q′] reaches the end

of list N̂
A

(q′), the element q′ is deleted from the doubly linked list Q. This
makes sure that no more Type 1 work is done on q′ or the list N̂

A
(q′) during

the current invocation of Algorithm 1. Thus, during the processing of each x
such that q′ ∈ N

B
(x), Line 7 is repeated only O(n1 − degA(q′)) times.

There are at most |{x | q′ ∈ N
B

(x)}| = deg
A

(q′) invocations of Algorithm 1
during which q′ ∈ Q and in each such invocation, q′ can account for the
execution of Line 7 for O(n1− degA(q′)) times. Therefore, over all invocations
of Algorithm 1, the number of times Line 7 is executed is
O
(∑

q′∈B (n1 − degA(q′))deg
A

(q′)
)

= O(nmin(m
AB
, t)) = O(ξn).

It is possible that Q is found empty when the algorithm is trying to traverse
the linked list Q in Line 6. However, this can happen only O(|P |) = O(n)
times during an invocation of Algorithm 1. Therefore, over all invocations of
Algorithm 1, the time spent in Line 6 with Q being found empty is O(n2). It is
easy to see that the number of times Line 6 gets executed with Q being found
non-empty is at most the number of times Line 7 is executed and Lines 9 - 12
get executed at most once for each such execution of Line 6. The deletion of
q′ in Line 10 can be done in unit time, since the pointer storing the current
traversal position of the doubly linked list Q points to q′. Hence the total time
spent for Type 1 work over all invocations of Algorithm 1 is O(ξn+ n2).

Type 2 work (Lines 13 to 19): As in the case of Type 1 work, a pointer is
used for storing the current traversal position in the doubly linked list R and
it is made to point to the next element in R each time Line 13 is executed.
For each element r′ ∈ R, the algorithm remembers the traversal position in
the linked list N

A
(r′) using ptr2[r′]. This means that ptr2[r′] continues from

where it stopped in the current iteration while doing the Type 2 work of the
next element of P . Therefore, pointer ptr2[r′] moves at most deg

A
(r′) times

for each r′ ∈ R = N̂
B

(x). When ptr2[r′] reaches the end of list N
A

(r′), the
element r′ is deleted from the doubly linked list R. This makes sure that
during the processing each x such that r′ ∈ N̂

B
(x), Line 14 is repeated only

O(deg
A

(r′)) times. If r′ /∈ N̂
B

(x), there is no Type 2 work associated with
r′. Thus, there are exactly |{x | r′ ∈ N̂

B
(x)}| = n1 − deg

A
(r′) invocations

of Algorithm 1 such that r′ ∈ N̂
B

(x) and in each such invocation, r′ can
account for the execution of Line 14 for O(deg

A
(r′)) times. Therefore, over

all invocations of Algorithm 1, the number of times Line 14 is executed is
O (∑b′∈B degA(b′)(n1 − degA(b′))) = O(nmin(m

AB
, t)) = O(ξn). It is possible

that R is found empty when the algorithm is trying to traverse the linked list
R in Line 13. However, this can happen only O(|P |) = O(n) times during an
invocation of Algorithm 1. Therefore, over all invocations of Algorithm 1, the
time spent in Line 13 with R being found empty is O(n2). It is easy to see that
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the number of times Line 13 gets executed with R being found non-empty is at
most the number of times Line 14 is executed and Lines 16 - 19 get executed at
most once for each such execution of Line 13. The deletion of r′ in Line 17 can
be done in unit time, since the pointer storing the current traversal position
of the doubly linked list R points to r′. Hence the total time spent for Type 2
work (over all invocations of Algorithm 1) is O(ξn+ n2).

Thus the total time spent over all invocations of Algorithm 1 is O(ξn+n2),
as claimed.

Since box(G) = χ(H∗) by Theorem 2.4, from Lemma 2.16 and Lemma 2.17,
we can conclude:

Theorem 2.18. If G is a co-bipartite circular arc graph with cliques A and
V \A, then, box(G) can be computed in O(ξn+n2) time, where ξ = min(number
of edges between A and V \ A in G, number of edges between A and V \ A
in G).

2.6.3 Expanding color classes of H∗ to maximal inde-
pendent sets

For 1 ≤ i ≤ k, let Ci be the ith color class in the optimal coloring ofH∗ obtained
by the algorithm of Section 2.6.2 and let C ′i be a maximal independent set
containing Ci. Recall from the beginning of Section 2.6, that we can compute
an optimal box representation B = {G1, G2, · · · , Gk} of G, by computing
C ′i, for 1 ≤ i ≤ k. The following lemma suggests one way to compute these
maximal independent sets.

Lemma 2.19. Let Ci be the ith color class in the optimal coloring of H∗
obtained by the algorithm of Section 2.6.2. Let Si = C1 ∪C2 ∪ · · · ∪Ci and let
MaxSi be the set of maximal elements of (Si,≺∗), i.e, MaxSi = {Γab′ ∈ Si |
@Γcd′ ∈ Si with Γab′ ≺∗ Γcd′}. Then MaxSi is a maximal independent set in
H∗ containing Ci.

Proof. MaxSi, being the set of maximal elements of (Si, ≺∗), forms an inde-
pendent set in H∗. Recall that, as per our algorithm, for any ab′ ∈ E(H),
Color(ab′) = max{Color(e) + 1 | e ∈ E(H) such that e ≺ ab′}. Consider
Γab′ ∈ Ci. If ∃cd′ such that ab′ ≺ cd′, then Color(cd′) > Color(ab′) = i and
therefore, Γcd′ /∈ Si. Hence, by the definition of MaxSi, Γab′ ∈ MaxSi. Thus,
Ci ⊆MaxSi.

Consider any Γab′ /∈ MaxSi. Either Γab′ ∈ (Si \MaxSi) or Γab′ /∈ Si. In
the former case, ∃Γcd′ ∈ MaxSi with Γab′ ≺∗ Γcd′ . In the latter case, when
Γab′ /∈ Si, Color(ab′) > i and it is easy to see from our coloring strategy that
∃Γcd′ ∈ Ci ⊆ MaxSi with Γcd′ ≺∗ Γab′ . Therefore, in both cases, if Γab′ is
added to MaxSi, it will no longer be an independent set. Thus, MaxSi is a
maximal independent set containing Ci.
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The next question is to efficiently compute MaxSi, for 1 ≤ i ≤ k. For this
purpose, we introduce the following definition.

Definition 2.7. For each ab′ ∈ E(H), let

Next(ab′) =

 min
e∈E(H),ab′≺e

{Color(e)}, if ∃e ∈ E(H) such that ab′ ≺ e

k + 1, otherwise

Lemma 2.20. For 1 ≤ i ≤ k, MaxSi = {Γab′ ∈ Si | Next(ab′) > i}

Proof. If Γab′ /∈ MaxSi, then ∃Γcd′ ∈ Si with Γab′ ≺∗ Γcd′ . It will follow that
Next(ab′) ≤ Color(cd′) ≤ i. Conversely, if Next(ab′) ≤ i, then ∃Γcd′ ∈ Si with
Γab′ ≺∗ Γcd′ and hence Γab′ /∈MaxSi.

Our method is to first compute Next(ab′) for each ab′ ∈ E(H) and then,
use Lemma 2.20 to compute MaxSi, for 1 ≤ i ≤ k.

Computing Next(ab′) for all ab′ ∈ E(H)

Here we describe an algorithm to compute Next(ab′) for all ab′ ∈ E(H) in
O(ξn+n2) time. Let Next(ab′) for all ab′ ∈ E(H) be initialized to k+ 1. This
can be done in O(|E(H)|) = O(n2).

Consider the following strategy. Take a non-edge e ∈ E(H) and update
Next(ab′) of all ab′ ≺ e with min(Next(ab′), Color(e)). When we have re-
peated this for all e ∈ E(H), it is easy to see that the values of Next(ab′) for
every ab′ ∈ E(H) will satisfy Definition 2.7.

In order to do this efficiently, we process the non-edges incident at a vertex
x ∈ A together, in an invocation of Algorithm 2 - hereafter called the processing
of x. During the processing of x, each non-edge xy′ incident at x updates
Next(ab′) of all ab′ ≺ xy′ with min(Next(ab′), Color(xy′)). We will process
x = 1, 2, · · · , n1 in that order. The data structures used are similar to those
used for Algorithm 1.

Consider an x ∈ A. As in Section 2.6.2, let P = {a ∈ N
A

(N̂
B

(x)) | a < x},
Q = {b′ ∈ N

B
(x) | b′ < min N̂

B
(x)} and Fy′ = {ab′ ∈ E(H) | ab′ ≺ xy′}.

Let Tx = ⋃
y′∈N̂

B
(x){ab

′ ∈ E(H) | ab′ ≺ xy′} = ⋃
y′∈N̂

B
(x) Fy′ . Notice that,

by the definition of Tx and Next(ab′), the value of Next(ab′) is dependent
on the colors assigned to some non-edge incident at x, only if ab′ ∈ Tx. By
the claim proved in Section 2.6.2, Fy′ = {ab′ ∈ E(H) | a ∈ N

A
(y′) ∩ P and

b′ ∈ Q}. Hence, Tx = {ab′ ∈ E(H) | a ∈ P and b′ ∈ Q}. Therefore, during
the processing of x ∈ A, we just need to update the Next values of non-edges
between P and Q only.

Consider any ab′ ∈ Tx. The set of non-edges incident at x whose colors
can affect the value of Next(ab′) belong to the set {xy′ | y′ ∈ N̂

B
(x) and

ab′ ≺ xy′}. We claim that this set is the same as {xy′ | y′ ∈ N̂
B

(x) ∩N
B

(a)}.
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Since ab′ ≺ xy′ implies y′ ∈ N̂
B

(x) ∩ N
B

(a), we have {xy′ | y′ ∈ N̂
B

(x) and
ab′ ≺ xy′} ⊆ {xy′ | y′ ∈ N̂

B
(x) ∩ N

B
(a)}. To prove the reverse direction of

inclusion, assume that xy′ is such that y′ ∈ N̂
B

(x) ∩ N
B

(a). In the previous
paragraph, we saw that ab′ ∈ Tx implies ab′ ∈ E(H) with a ∈ P and b ∈ Q.
From the definitions of P and Q and the assumption that y′ ∈ N̂

B
(x)∩N

B
(a),

it follows that a < x, ay′ ∈ E(G), xb′ ∈ E(G), xy′ ∈ E(H) and b′ < y′.
Moreover, ab′ ∈ E(H) and A and B are cliques in G. Therefore, by the
definition of ≺, we get ab′ ≺ xy′. Thus, {xy′ | y′ ∈ N̂

B
(x) and ab′ ≺ xy′} ⊇

{xy′ | y′ ∈ N̂
B

(x) ∩N
B

(a)}.
Thus, the set of non-edges incident at x whose colors can affect the value

of Next(ab′) belong to the set {xy′ | y′ ∈ N̂
B

(x) ∩ N
B

(a)}. Notice that for
any fixed a ∈ P , this set is independent of any particular b′ ∈ Q. Let us
denote this set by Ua. For any non-edge ab′ ∈ E(H) with a ∈ P and b′ ∈ Q,
Next(ab′) ≤ min{Color(e) | e ∈ Ua}. Hence, we can make the following
inference, which is critical for the efficiency of Algorithm 2:
Fact. For a fixed vertex a ∈ P , for any non-edge ab′ ∈ E(H) between a

and Q, we just need to update Next(ab′) with min(Next(ab′),MinColor[a]),
where MinColor[a] = min{Color(e) | e ∈ Ua}, irrespective of which b′ ∈ Q is
involved. (If Ua = ∅, we take MinColor[a] = k + 1.)
Here is a short description of Algorithm 2. To make it easier to follow this
description, the reader may refer to Figure 2.4.

• Type 0 work (Lines 1 to 3): This is similar to Type 0 work of Algorithm 1.
In these lines, the algorithm computes Q, R and the indicator array AP
of P and initializes the pointer ptr1[b′] for each b′ ∈ Q and the pointer
ptr2[r′] for each r′ ∈ R. The lists Q and R are represented as doubly
linked lists. For each a ∈ P , MinColor[a] is initialized to k + 1.

• Type 1 work (Lines 6 to 12 performed for elements of P considered
according to their ascending order): By these lines, for each p ∈ P

the algorithm computes MinColor[p] = min{Color(xy′) | y′ ∈ N̂
B

(x) ∩
N
B

(p)}. To achieve this, for each r′ ∈ R = N̂
B

(x) such that p ∈ N
A

(r′),
the algorithm updates MinColor[p] = min (MinColor[p], Color(xr′)).
For checking whether p ∈ N

A
(r′) the algorithm traverses the sorted list

R = N
A

(r′) by updating ptr2[r′], as we did for the Type 2 work of
Algorithm 1.

• Type 2 work (Lines 13 to 19 performed for elements of P considered ac-
cording to their ascending order): By these lines, the algorithm updates
Next(ab′), for each ab′ ∈ Tx with min(Next(ab′),MinColor[a]). (Recall
that Tx = {ab′ ∈ E(H) | a ∈ P and b′ ∈ Q}.) To achieve this, for
each q′ ∈ Q such that p ∈ N̂

A
(q′), the algorithm updates Next(pb′) =

min(Next(pb′),MinColor[p]). For checking whether p ∈ N̂
A

(q′), the al-
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Algorithm 2: Each non-edge xy′ incident at vertex x ∈ A updates
Next(ab′) of all non-edges ab′ ≺ xy′

Input: x ∈ A
Output: The updated Next(ab′) for each non-edges ab′ ≺ xy′ where

y′ ∈ N̂
B

(x)
/* Type 0 work : Lines 1 to 3 - Initializations */
/* Let P = {a ∈ N

A
(N̂

B
(x)) | a < x} */

1 For 1 ≤ a ≤ n1, let AP [a] = 0 initially. For each a ∈ P , set AP [a] = 1
and MinColor[a] = k + 1

2 Compute Q = {b′ ∈ N
B

(x) | b′ < p′}, where p′ = min (N̂
B

(x)), which is
the first element of N̂

B
(x). For each b′ ∈ Q initialize ptr1[b′] = NULL if

N̂
A

(b′) = ∅, and ptr1[b′] = start of N̂
A

(b′) otherwise.
3 Assign R = N̂

B
(x) and for each r′ ∈ R initialize ptr2[r′] = NULL if

N
A

(r′) = ∅, and ptr2[r′] = start of N
A

(r′) otherwise.
4 for cur = 1 to n1 do
5 if AP [cur] = 1 then

/* Type 1 work : Lines 6 to 12 - Computing
MinColor[cur] = the minimum color given to a
non-edge between x and N

B
(cur) ∩R */

6 for each r′ in R do
7 while ptr2[r′] is not NULL and N

A
(r′)[ptr2[r′]] < cur do

8 Increment the pointer ptr2[r′] /* ptr2[r′] becomes NULL
if it is incremented past the last element in
N
A

(r′) */

9 if ptr2[r′] is NULL then
10 delete r′ from R

11 else if N
A

(r′)[ptr2[r′]] = cur then
12 MinColor[cur] = min(MinColor[cur], Color(xr′))

/* Type 2 work : Lines 13 to 19 - Update Next of
non-edges between cur and Q */

13 for each q′ in Q do
14 while ptr1[q′] is not NULL and N̂

A
(q′)[ptr1[q′]] < cur do

15 Increment the pointer ptr1[q′] /* ptr1[q′] becomes NULL
if it is incremented past the last element in
N̂
A

(q′) */

16 if ptr1[q′] is NULL then
17 delete q′ from Q

18 else if N̂
A

(q′)[ptr1[q′]] = cur then
19 Next(cur q′) = min(Next(cur q′),MinColor[cur])
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gorithm traverses the sorted list N̂
A

(q′) by updating ptr1[q′] as we did in
Type 1 work of Algorithm 1.

By the time we have processed all x ∈ A in their increasing order, all non-edges
e ∈ E(H) get processed and hence Next(ab′) for each ab′ ∈ E(H) is correctly
computed as explained in the beginning of this section.

Lemma 2.21. Time spent over all invocations of Algorithm 2 is O(ξn+ n2).

Proof. Type 0 work done by Algorithm 2 (Lines 1 to 3) is similar to the Type
0 work of Algorithm 1 and hence the total time spent in Type 0 work over all
invocations of Algorithm 2 is O(ξn+ n2).

Let us calculate the total time spent in Type 1 work. By similar arguments
that were used to count the number of times Line 14 of Algorithm 1 is executed,
we can show that over all invocations of Algorithm 2, the number of times
Line 7 is executed is O (∑b′∈B degA(b′)(n1 − degA(b′))) = O(ξn). Similar to
the analysis of Line 13 of Algorithm 1, over all invocations of Algorithm 2 the
time spent in Line 6 with R being found empty is O(n2). It is easy to see that
the number of times Line 6 gets executed with R being found non-empty is at
most the number of times Line 7 is executed and Lines 9 - 12 get executed at
most once for each such execution of Line 6. Also, the deletion of r′ in Line 10
can be done in unit time. Hence the total time spent for Type 1 work over all
invocations of Algorithm 2 is O(ξn+ n2).

Now consider Type 2 work. By similar arguments that were used to count
the number of times Line 7 of Algorithm 1 is executed, we can show that over
all invocations of Algorithm 2, the number of times Line 14 is executed is
O (∑b′∈B (n1 − degA(b′))deg

A
(b′)) = O(ξn). Similar to the analysis of Line 6

of Algorithm 1, over all invocations of Algorithm 2, the time spent in Line 13
with Q being found empty is O(n2). It is easy to see that the number of times
Line 13 gets executed with Q being found non-empty is at most the number
of times Line 14 is executed and Lines 16 - 19 get executed at most once for
each such execution of Line 13. Also, the deletion of q′ in Line 17 can be done
in unit time. Hence the total time spent for Type 2 work over all invocations
of Algorithm 2 is O(ξn+ n2).

Thus the total time spent over all invocations of Algorithm 2 is O(ξn+n2)
as claimed.

Computing MaxSi and obtaining an optimal box representation of
G. Once Next(ab′) for each ab′ ∈ E(H) is correctly computed by invoking
Algorithm 2 for each x ∈ A, we compute MaxSi = {Γab′ ∈ Si | Next(ab′) >
i} = {Γab′ | ab′ ∈ E(H) and Color(ab′) ≤ i and Next(ab′) > i}, for 1 ≤ i ≤ k.
This can be done in overall O(k · |E(H)|)=O(kn2) time.

For 1 ≤ i ≤ k, let Ei = {e ∈ E(H) | Γe ∈ MaxSi}. As mentioned in
the beginning of Section 2.6, {Gi = Hi | Hi = (V,Ei), 1 ≤ i ≤ k}, gives an
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optimal box representation of G. Since each Gi can be computed from Ei in
O(n2), the above box representation can be obtained in O(kn2) time. Thus,
we have the following theorem.

Theorem 2.22. If G is a co-bipartite circular arc graph with cliques A and
V \A, then, an optimal box representation of G can be computed in O(ξn+kn2)
time, where ξ = min(number of edges between A and V \ A in G, number of
edges between A and V \ A in G) and k = box(G).

2.7 An approximation algorithm for the cu-
bicity of circular arc graphs

Given any interval graph I on n vertices, we can represent it as the intersec-
tion of at most dlog ne unit interval graphs and such a representation can be
computed in polynomial time [28]. Therefore, it is easy to observe that our
algorithm for computing a

(
2 + 1

k

)
factor optimal box representation of CA

graphs immediately gives an algorithm to get a
(
2 + 1

k

)
· dlog ne factor opti-

mal cube representation of CA graphs. However, we can improve this to a
(2 + dlogne

k
) factor as stated below.

Theorem 2.23. Let G be a CA graph. A
(
2 + dlogne

k

)
-factor approximation

for cub(G) can be computed in O(mn+ n2) time and a cube representation of
G of dimension at most 2 · cub(G) + dlog ne can be computed in O(mn+ kn2)
time, where m = |E(G)|, n = |V (G)| and k = cub(G).

Proof. In Section 2.5, we saw that for every CA graph G, we can construct two
supergraphs G0(V,E0) and G1(V,E1) such that G0 is a co-bipartite CA graph
and G1 is an interval graph and G = G0 ∩G1. As mentioned in Remark 2.1 at
the end of Section 2.3, the optimal box representation B0 = {I ′1, I ′2, · · · , I ′b} of
the co-bipartite CA graph G0 obtained using the algorithm of Section 2.6, is
also an optimal cube representation of G0 because each I ′i, 1 ≤ i ≤ b is a unit
interval graph.

Using the method of [28], we can compute a cube representation of the
interval graph G1 of dimension dlog ne in O((m′ + n) log n) time, where m′ =
|E(G1)| and n = |V (G1)| = |V (G)|. However, since vertices in A are universal
vertices in G1, we can do this computation in O((m + n) log n) time, where
m = |E(G)|. For this, we will first compute a cube representation of the graph
G′1, which is the extension of G[V \A] on the vertex set (V \A)∪{x}, where x
is an arbitrarily chosen representative vertex in A. Since |E(G′1)| ≤ m+n, we
can compute a cube representation B′1 of G′1 of dimension dlog ne, in O((m +
n) log n) time, using the method of [28]. In each interval graph in B′1, assign
the interval of each vertex of A to be the same as the interval corresponding
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to the representative vertex x. This will give us a cube representation B1 of
G1, because in G1, every vertex y in A is adjacent to x and the neighborhoods
of x and y are the same.

Since G = G0 ∩ G1, B′′ = B0 ∪ B1 is a cube representation of G. The
dimension of B′′ is b+ dlog ne, where b = box(G0) = cub(G0). By Lemma 2.9,
box(G0) ≤ 2 box(G) ≤ 2 cub(G), implying that B′′ is of dimension at most
2 cub(G) + dlog ne. The time complexity of this algorithm is O(mn + kn2),
because the time complexity is dominated by the time taken to compute B0.

2.8 Conclusion
We showed that, for a co-bipartite CA graph G, an optimal box representation
of G can be obtained in polynomial time. Later, using some structural prop-
erties of co-bipartite CA graphs, we made this algorithm more efficient and
showed that box(G) can be computed in O(mn+n2) time and an optimal box
representation of G can be obtained in O(mn+ kn2) time, where m = |E(G)|,
n = |V (G)| and k = box(G). The algorithms developed for co-bipartite CA
graphs are used as subroutines in all the remaining algorithms in this chap-
ter. We gave an algorithm to compute a box representation of an arbitrary
CA graph G, of dimension at most 2 box(G) + 1. We also explained how to
compute box representations of proper CA graphs, of dimension at most two
more than the optimum. We also gave an algorithm to compute a cube rep-
resentation of a CA graph G of dimension at most 2 cub(G) + dlog ne. The
time required for approximating the boxicity (resp. cubicity) is O(mn + n2)
and the time required for computing the box (resp. cube) representation is
O(mn+ kn2), in all the above algorithms.



Chapter 3

Approximating the cubicity of
trees

It is NP-hard to decide whether cubicity of a graph is at most
k, even for k = 2 or k = 3. Moreover, cubicity is known to be
inapproximable in polynomial time, within an O(n1−ε) factor for
any ε > 0, unless NP = ZPP.

In this chapter1 we present a randomized algorithm that runs
in polynomial time and computes cube representations of trees, of
dimension within a constant factor of the optimum. If we do not
insist for a cube representation, then the cubicity of trees can be
approximated within a constant factor in polynomial time, without
using any randomization. As far as we know, this is the first con-
stant factor approximation algorithm for computing the cubicity
of trees. It is not known whether computing the cubicity of trees
is NP-hard or not.

3.1 Introduction
Recall that in Section 1.1 we defined a d-dimensional cube representation of
a graph G as a geometric representation of G as an intersection graph of d-
dimensional axis-parallel unit hypercubes and the cubicity of G, cub(G), as
the smallest dimension d such that G can be represented as an intersection
graph of d-dimensional axis-parallel unit hypercubes. In other words, cub(G)
is the smallest dimension d for which G is a unit disc graph in Rd, under the
l∞ metric.

In Chapter 2, we also saw a combinatorial redefinition that cub(G) is the
smallest integer d such that G can be represented as the intersection of d

1Joint work with Manu Basavaraju, L. Sunil Chandran, Deepak Rajendraprasad and
Naveen Sivadasan.
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unit interval graphs on the same vertex set V (G); i.e there exist unit interval
graphs I1, I2, . . . , Id with V (Ii) = V (G) for each 1 ≤ i ≤ d and E(G) =
E(I1)∩E(I2)∩· · ·∩E(Id). If the requirement of unit interval graphs is relaxed
to interval graphs the corresponding parameter was defined as boxicity.

It is known that box(G) ≤ cub(G) ≤ box(G)dlogα(G)e, where α(G) is the
cardinality of a maximum independent set in G [5]. Boxicity (resp. cubicity) of
a graph on n vertices is at most

⌊
n
2

⌋
(resp.

⌈
2n
3

⌉
) [78]. By convention, cubicity

and boxicity of a complete graph are zero. It follows from the definitions that
cub(G) ≤ 1, if and only if G is a unit interval graph and box(G) ≤ 1, if and
only if G is an interval graph.

Since unit interval graphs are polynomial time recognizable, whether
cub(G) ≤ 1 is polynomial time decidable. However, deciding whether a graph
has cubicity at most k is NP-hard in general. Yannakakis [98] showed that
deciding whether cub(G) ≤ 3 is NP-hard, even for co-bipartite graphs. Later,
while studying unit disc graph recognition problems, Breu et al. [18] showed
that deciding cub(G) ≤ 2 is also NP-hard. Adiga et al. [3] showed that
boxicity and cubicity problems are inapproximable in polynomial time, within
an O(n0.5−ε) factor for any ε > 0, unless NP = ZPP, even for graph classes
like bipartite, co-bipartite, and split graphs. Recently, Chalermsook et al. [25]
improved this hardness result by bettering the O(n0.5−ε) factor to an O(n1−ε)
factor. Even for special classes of graphs, there were no good approximation
algorithms known to exist for these problems; an exception being the case of
circular arc graphs which was discussed in Chapter 2.

In this chapter, we present a randomized algorithm that runs in polynomial
time, for computing cube representations of trees. Our algorithm computes
cube representations of trees of dimension within a constant factor of the op-
timum. If we do not require a corresponding cube representation, then the
cubicity of trees can be approximated within a constant factor in polynomial
time, without using any randomization. As far as we know, the algorithm pre-
sented here is the first constant factor approximation algorithm for computing
the cubicity of trees. It is not known whether computing the cubicity of trees
is NP-hard or not.

Our randomized procedure borrows its ideas from the randomized algo-
rithm devised by Krauthgamer et al. [65], for approximating the intrinsic
dimensionality of trees. As we will see, this parameter is fundamentally dif-
ferent and is incomparable with cubicity in general. However, it comes as a
surprise that their proof technique works more or less the same way for cu-
bicity of trees, with some problem specific modifications to handle the details
and the base cases. This is more surprising because Krauthgamer et al. [65]
devised an O(log log n) factor approximation for intrinsic dimensionality of
general graphs by extending the the proof techniques used for trees; whereas
cubicity for general graphs is inapproximable within O(n1−ε) factor for any
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ε > 0, unless NP=ZPP.

3.2 Preliminaries
In this chapter, we are dealing with only finite graphs, without self loops or
multi edges. Unless specified otherwise, logarithms are taken to the base 2. A
unit hypercube in Rd is a hypercube whose sides are of unit length in the usual
Euclidean metric, i.e it is a disc in Rd of radius 1

2 under the l∞ metric. We
consider our trees as rooted trees in which the root vertex is considered to be
at depth zero and for any other vertex, its depth is given by its distance from
the root. For any two vertices u and v of a tree T , the least common ancestor
of u and v is the vertex with the minimum depth on the path between u and
v in T . If u, v are two vertices in a graph G, we use duv(G) to denote the
distance between u and v in G and when it clear which graph we are talking
out, we just use duv.

3.2.1 Cube representations, embeddings and
weight-vector assignments to edges

Let G be a graph and suppose f : V (G) 7→ Rd is such that ‖f(v)− f(u)‖∞ ≤
1 if and only if u and v are adjacent in G. If we consider unit hypercube
corresponding to a vertex v as the unit hypercube centered at f(v), then it
is easy to see that the hypercubes corresponding to u and v intersect if and
only if ‖f(v)− f(u)‖∞ ≤ 1. Conversely, given a cube representation of G in d
dimensions, for any v ∈ V (G) we can define f(v) as the vector corresponding to
the center of the hypercube associated with v. Since we derived f from a cube
representation of G, it follows from the definition that ‖f(v)− f(u)‖∞ ≤ 1 if
and only if u and v are adjacent in G. Thus, cubicity of a graph G is also the
minimum dimension d such that there exist a function f : V (G) 7→ Rd such
that ‖f(v)− f(u)‖∞ ≤ 1 if and only if u and v are adjacent in G.

Now we will turn our attention to the special case of trees and show that
there is a correspondence between the maps from V (T ) to Rd as discussed
above, and weight-vector assignments to edges E(T ) 7→ [−1, 1]d with some
nice properties. Let r denote an arbitrarily chosen root vertex of T and let h
be the height of the rooted tree T . Suppose we have a weight-vector assignment
W : E(T ) 7→ [−1, 1]d. For any vertex v 6= r, let SW (v) be the sum of weight-
vectors of edges along the path in T from r to v, under the weight-vector
assignment W and let SW (r) be the zero vector. Note that if u and v are
adjacent in T , then ‖SW (u)− SW (v)‖∞ ≤ 1.

Definition 3.1. Let W be a weight-vector assignment such that W : E(T ) 7→
[−1, 1]d and SW be defined with respect to W , as above. We say that W is a
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separating weight-vector assignment for a pair u, v of non-adjacent vertices of
T , if ‖SW (u)− SW (v)‖∞ > 1.

If W : E(T ) 7→ [−1, 1]d is a separating weight-vector assignment for every
pair u, v of non-adjacent vertices of T , then the function f : V (T ) 7→ Rd

defined as f(v) = SW (v) corresponds to a d-dimensional cube representation
of T .

Conversely, given f : V (T ) 7→ Rd such that ‖f(v) − f(u)‖∞ ≤ 1 if and
only if u and v are adjacent in G, we can also get a corresponding weight-
vector assignment W : E(T ) 7→ [−1, 1]d such that ‖SW (u) − SW (v)‖∞ > 1,
if and only if u and v are non-adjacent. If uv ∈ E(T ) such that u is the
child vertex of v, then define W (uv) = f(u) − f(v), which will be a vector
belonging to [−1,+1]d. From this, it is immediate that whenever u and v are
adjacent, ‖SW (u) − SW (v)‖∞ ≤ 1. If u and v are non-adjacent vertices, we
had ‖f(u) − f(v)‖∞ > 1. Suppose a is the least common ancestor of u and
v in T and u = v0, v1, v2, . . . , vj−1, a = vj, vj+1, vk, vk+1 = v is the path in T

between u and v. Since the path from vj = a to the root vertex is common
to both the path from u to r and v to r, it is easy to see that SW (u) −
SW (v) = W (v0, v1)+W (v1, v2)+· · ·+W (vj−1, vj)−W (vj, vj+1)−· · ·−W (vk, v).
Therefore, ‖SW (u)− SW (v)‖∞ = ‖W (u, v1) +W (v1, v2) + · · ·+W (vj−1, vj)−
W (vj, vj+1) − · · · −W (vk, v)‖∞. Since for any edge (vi, vi+1) in the uv path
W (vi, vi+1) = f(vi) − f(vi+1), the RHS is equal to ‖f(u) − f(v)‖∞ > 1. We
note down the following simple property, since it is used in later parts of this
chapter as well.

Property 3.1. Let T be a tree and W : E(T ) 7→ [−1, 1]d and for any vertex
v, let SW (v) be the sum of weight-vectors on the edges along the path in T

from the root of T to v, under the weight-vector assignment W . Suppose
u = v0, v1, v2, . . . , vk, vk+1 = v is the path in T between u and v. Then,
SW (u) − SW (v) = W (u, v1) + W (v1, v2) + · · · + W (vj−1, vj) −W (vj, vj+1) −
· · · −W (vk−1, vk)−W (vk, v), where vj is the least common ancestor of u and
v in T .

Our discussion is summarized below:

Lemma 3.1. Given a cube representations of T of dimension d, in polynomial
time we can compute weight-vector assignment W : E(T ) 7→ [−1, 1]d that is a
separating weight-vector assignment for every pair of non-adjacent vertices u
and v of T . Conversely, given weight-vector assignment W : E(T ) 7→ [−1, 1]d
that is a separating weight-vector assignment for every pair of non-adjacent
vertices u and v of T , then in polynomial time, we can obtain a d-dimensional
cube representation of T .
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3.2.2 A lower bound for cubicity

In this section we demonstrate an important lower bound for the cubicity of
general graphs and derive a lower bound in the special case of trees, using this
general lower bound.

Lemma 3.2 ([26]). If G is a graph of diameter d > 0, on n vertices, then
cub(G) ≥

⌈
logα(G)
log(d+1)

⌉
, where α(G) is the cardinality of a maximum independent

set in G.

Proof. Suppose cub(G) = k. This means that G can be represented as the
intersection graph of axis parallel hypercubes in k dimensions. This cube
representation, when projected to the k fundamental directions, give k unit
interval supergraphs of G, say I1, I2, . . . , Ik. Clearly, each Ii, 1 ≤ i ≤ k

has diameter at most d and in any interval representation of Ii, the distance
between the left end point of the left most unit interval and the right end point
of the rightmost unit interval is at most d+1. This implies that the total volume
occupied by the cube representation, in the k-dimensional Euclidean space is
at most (d + 1)k. But we know that there are α(G) vertices such that unit
volume hypercubes corresponding to no two of them share a common point.
Therefore, the volume occupied by the cube representation is at least α(G)
units. Thus we have, (d+ 1)k ≥ α(G).

Definition 3.2. Let G be a connected graph of diameter d and for each 1 ≤
r ≤ d and v ∈ V (T ), let Bv,r represent the set of vertices in G, which are at

a distance at most r from v. Then, we define ρ(G) = max
v∈V,1≤r≤d

log |Bv,r|2
log (2r + 1).

Note that, if G has at least three vertices, then dρ(T )e ≥ 1.

The following lemma is a direct consequence of the above definition.

Lemma 3.3. Let G be a connected graph. For any v ∈ V (G) and 1 ≤ r ≤
diameter(G), |Bv,r| ≤ 2(2r + 1)ρ(G).

Theorem 3.4. For any connected bipartite graph G, cub(G) ≥ dρ(G)e. In
particular, for any tree T , cub(T ) ≥ dρ(T )e.

Proof. This directly follows from Lemma 3.2, because the subgraph of G in-
duced on Bv,r has an independent set of size at least |Bv,r|2 and diameter at
most 2r.

Remark 3.1. Note that, though for a bipartite graph G its cubicity is at least
ρ(G), this need not be true in the case of general graphs. An easy counter
example would be the case of cliques.
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3.2.3 Cube representations of short trees
In this section, we describe a way of constructing low dimensional cube repre-
sentations of trees having relatively small height.

Lemma 3.5. For any tree T on n vertices, cub(T ) ≤ 1 + dlog ne and a cube
representation of T of dimension 1 + dlog ne can be constructed in polynomial
time.

Proof. Shah [83] describes a polynomial time algorithm for constructing two
interval supergraphs I1 and I2 of T such that V (T ) = V (I1) = V (I2), I1 is a
unit interval graph and E(T ) = E(I1) ∩ E(I2). Since we also know that any
interval graph has dlog ne-dimensional cube representation and in polynomial
time we can construct dlog ne unit interval graphs on the same vertex set
V (T ) = V (I2) such that the intersection of their edge sets is E(I2) [28]. From
this, the statement follows.

Lemma 3.6. Let T be a tree with cub(T ) ≥ 2 and Ti be a subtree of T of height
at most 224. Then, a cube representation of Ti of dimension dc× ρ(T )e+ 2 ≤
(c+1)×cub(T ) or more can be constructed in polynomial time, where c = 22.77.

Proof. If cub(T ) ≤ 1, T should be path; otherwise, it has an induced star on
four vertices, denoted as K1,3, which forces cub(T ) ≥ 2 [28]. Since we assumed
that cub(T ) ≥ 2, T contains an induced K1,3 and therefore, dρ(T )e ≥ 1. If
cub(Ti) ≥ 2, by Lemma 3.3, |V (Ti)| ≤ 2(217 + 1)ρ(T ). By Lemma 3.5, a cube
representation of T of dimension d ≤ 2+dρ(T ) log(217 + 1)e can be constructed
in polynomial time.

After getting a cube representation of Ti in a lower dimension d1, it is a
trivial job to extend it to a higher dimension d2. Consider the cube represen-
tation as a mapping f : V (T ) 7→ Rd1 , as described in Section 3.2.1 and for
each v ∈ V (T ), append the vector f(v) with d2 − d1 additional coordinates
each of whose value is zero. By Lemma 3.4, the statement follows.

3.2.4 Cubicity and intrinsic dimensionality
Let Z denote the set of integers and ‖‖∞ denote the l∞ norm. Let Zd

∞ be the
infinite graph with vertex set Zd and an edge (u, v) for two vertices u and v if
and only if ‖u−v‖∞ = 1. The intrinsic dimensionality of a graph G, dim(G) is
the smallest d such that G can be injectively embedded on to Zd

∞. This means
that G occurs as a (not necessarily induced) subgraph of Zd

∞.
Though both cubicity and intrinsic dimensionality are parameters related

to graph embeddings, there are several fundamental differences between these
two.
(1) Injectivity: Intrinsic dimensionality requires the mapping from V (G) to
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Zd to be injective. Thus, dense graphs will have relatively high intrinsic di-
mensionality compared to sparse graphs. A clique on n vertices has intrinsic
dimensionality log2 n. In contrast, the injectivity constraint is absent for cu-
bicity. In a cube representation, the hypercubes corresponding to two distinct
vertices are permitted to occupy the same space. Recall that a clique has cu-
bicity zero.
(2) Vertex Positioning: In the case of intrinsic dimensionality, we should
map the vertices of the graph to points in Zd. However, as we saw in the
previous section, the mappings associated with cubicity are from V (G) to Rd,
giving us more freedom to place the hypercubes corresponding to the vertices.
There are some graphs for which there is a cube representation in R2 even when
its vertices have their neighborhoods different from each other, forcing an in-
jective embedding from V (G) to R2. For example, we can show that a graph
having two cliques on n vertices and a matching connecting the corresponding
pairs of vertices in both the cliques has cubicity two. Thus, even when cube
representations have their corresponding vertex embedding injective, cubicity
can be very low, due to the flexibility in vertex positioning.
(3) Treatment of non-adjacency and monotonicity: In the case of in-
trinsic dimensionality, it is possible to map even non-adjacent vertices u and
v to points in Zd which are at unit distance from each other. Because of this
freedom, if a graph has intrinsic dimensionality k, its subgraphs will have in-
trinsic dimensionality at most k. Thus, intrinsic dimensionality is monotone,
with respect to subgraph relation. In particular, all graphs of n vertices have
intrinsic dimensionality at most that of a clique on n vertices, namely log2 n.

However, in the case of cube representations, we require the hypercubes
corresponding to non-adjacent vertices to be non-intersecting and as we dis-
cussed in Section 3.2.1, the centers of hypercubes of non-adjacent vertices are
required to be mapped to points in Rd which are at distance strictly more
than one. For this reason, the monotonicity we observed in the case of intrin-
sic dimensionality does not happen for cubicity. A clique has cubicity zero,
but almost all graphs on n vertices have cubicity Ω(n) [6].
(4) Parameter value range: As we noted, almost all graphs on n vertices
have cubicity Ω(n). There are graphs on n vertices with cubicity

⌈
2n
3

⌉
. But

the intrinsic dimensionality of a graph on n vertices is at most log2 n.
(5) Good polynomial time approximations: Krauthgamer et al. [65]
defined a parameter called growth rate of a graph G, defined as

η(G) = sup

{
log |Bv,r|

log r | v ∈ V (G), r > 1
}

Note that, this parameter is computable in polynomial time and for a graph
on n vertices, the value of this parameter is at most log n. Krauthgamer et
al. [65] showed that for any graph G, its growth rate is a lower bound for its
intrinsic dimensionality. They also showed that dim(G) is O(η(G) log η(G))
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in general and in the special case of trees, dim(G) is O(η(G)). This leads to
an O(log log n) factor approximation algorithm for the intrinsic dimensionality
of general graphs and a constant factor approximation algorithm in the case
of trees. For cubicity, the bound given by Lemma 3.2 is the only non-trivial
polynomial time computable lower bound known. However, notice that this
parameter can only go up to log2 n, whereas almost all graphs on n vertices
have cubicity is Ω(n) [6]. Moreover, cubicity is known to be inapproximable
in polynomial time, within an O(n1−ε) factor for any ε > 0, unless NP = ZPP.

Thus, cubicity and intrinsic dimensionality are two graph parameters, not
directly comparable with each other in general. There are graphs for which
cubicity exceeds intrinsic dimensionality, and for some others it is the other
way. Even in the special case of trees, the intrinsic dimension and cubicity can
be different. For example, a star graphK1,n has intrinsic dimension log3(n+1),
whereas the same graph has cubicity log2 n[67, 28].

In spite of all these contrasts between cubicity and intrinsic dimension,
they share an interesting similarity: The injectivity requirement places a lower
bound on the volume required for injectively embedding a graph on to Zd

∞
and this is the reason for having growth rate as a lower bound for intrinsic
dimensionality. In the case of cubicity, cubes corresponding to non-adjacent
pairs of vertices need to be non-intersecting, giving a lower bound to the volume
required for placing the cubes. This fact was exploited to obtain the lower
bounds given by Lemma 3.2 and Theorem 3.4. In a retrospective analysis, it
appears that this similarity is what helped us to use the techniques developed
by Krauthgamer et al. [65] in developing our algorithm. We will be showing
that cubicity of a tree T is O(ρ(T )).

However, as we noted under item (5) above, this similarity between the
parameters is not powerful enough to be useful in the case of general graphs,
because of the approximation hardness results. The techniques do not seem
to scale up even in other special cases, for example, for graphs without long
induced simple cycles. Using the result obtained for trees, Krauthgamer et al.
[65] had showed that graphs without induced simple cycles of length greater
than λ have intrinsic dimensionality O(η(G) log2(λ + 2)). But we know that
even chordal graphs can have cubicity as high as Ω(n), whereas the lower bound
obtained from Lemma 3.2 can be at most log n. Moreover, even for split graphs
which form a subclass of chordal graphs, cubicity is known to be NP-hard to
approximate within an O(n1−ε) factor for any ε > 0, unless NP = ZPP.

3.3 Constructing the cube representation
Only cliques have cubicity zero. If a tree has a vertex of degree three, its
cubicity is greater than one, since it has an induced K1,3 [28]. Therefore, a
tree of cubicity one can be only a path, whose unit interval representation is
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easy to construct. Hence, for the remaining parts of this chapter, we assume
that cub(T ) ≥ 2. This also means that n ≥ 4 and dρ(T )e ≥ 1.

In the previous section, we saw that for a tree T , dρ(T )e is a lower bound
for cub(T ). Since ρ(T ) can be computed in polynomial time by its definition,
if we can show the existence of a constant c such that cub(T ) ≤ cdρ(T )e for
any tree T , then cdρ(T )e will serve as a polynomial time computable c factor
approximation for cub(T ). The existence and determination of such a constant
is proved using probabilistic arguments and the techniques we describe below
are essentially derived from the techniques used in Krauthgamer et al. [65].
The method also gives a randomized algorithm to compute the corresponding
cube representation.

3.3.1 A recursive decomposition of trees
We first define a recursive decomposition of the rooted tree T into rooted
subtrees.

Let h denote the height of the tree T . Let k = dlog log he and Γ = 22k .
Clearly,

√
Γ = 22k−1

< h ≤ 22k = Γ. For each 0 ≤ i ≤ k − 1, let hi = Γ
1
2i .

Thus, h0 = Γ and hi+1 =
√
hi. Let e denote the minimum even integer such

that he ≤ 216 and o denote the minimum odd integer such that ho ≤ 216. (This
means {he, ho} = {223

, 224}).
For each integer i such that max(e, o) ≥ i ≥ 0 we define two sets of rooted

subtrees of T as follows: If we delete all edges of T that connect vertices at
depth j and j + 1 for each j which is a positive integer multiple of 3hi, the
tree T gets decomposed into several vertex disjoint subtrees. We consider each
such subtree as a rooted subtree with its root being the vertex in the subtree
of smallest depth with respect to T . We denote this family of rooted subtrees
of T as Ai. In a similar way, let Bi denote the family of rooted subtrees of
T , obtained by deleting all edges of T that connect vertices at depth j and
j+ 1 for each j such that j ≡ hi mod 3hi. Let OA

i denote the the set of edges
deleted from T to form Ai and let OB

i denote the set of edges deleted from T

to form Bi. Let Li = Ai ∪ Bi.

Lemma 3.7. For each i such that max(e, o) ≥ i ≥ 0:

1. The rooted trees in Li have height at most 3hi.

2. Trees in Ai+1 are subtrees of trees in Ai and trees in Bi+1 are subtrees of
trees in Bi. This is because OA

i ⊆ OA
i+1 and OB

i ⊆ OB
i+1.

3. Vertex sets of trees in Ai partition V (T ). Same is the case with Bis.

4. If u and v are two vertices such that duv ≤ hi, then there exist at least
one subtree F ∈ Li such that both u and v belong to V (F ).
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Proof. The first three parts of the lemma follow directly from the definitions.
Here we will prove the last part of the lemma.

Assume that duv ≤ hi in T and let x be the least common ancestor of u
and v in T . Without loss of generality, let dvx ≤ dux ≤ hi. Let F be the tree
in Ai such that x ∈ V (F ) and let r be the root of F . We know that drx ≤ 3hi,
by construction of F . If drx ≤ 2hi, then drv ≤ dru = drx+dxu ≤ 2hi+hi ≤ 3hi
and therefore, v, u ∈ V (F ), by construction.

On the other hand, if drx > 2hi, then ∃y ∈ V (F ) such that dry = hi+1 and
y is on the path from r to x in T . By our construction, y becomes the root of
a tree F ′ ∈ Bi. Since drx ≤ 3hi by construction of F and dry = h+ 1, we have
dxy = drx − dry < 2hi. This gives duy = dux + dxy < hi + 2hi = 3hi Similarly,
dvy = dvx+dvy < hi+2hi = 3hi. Therefore, v, u ∈ V (F ′), by construction.

Definition 3.3. If T1, T2, . . . , Tk are trees with disjoint vertex sets and for
1 ≤ j ≤ k, Wj : E(Tj) 7→ [−1, 1]d, then a weight-vector assignment W :
E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk) 7→ [−1, 1]d can be obtained by assigning W (e) =
Wj(e), where Tj is the tree containing the edge e. Then,W is the weight-vector
assignment for E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk) derived from W1,W2, . . . ,Wk.

3.3.2 A randomized algorithm for constructing the cube
representation

From our definitions, {he, ho} = {223
, 224}. The idea of recursive decomposi-

tion of trees and extending the weight-vector assignments of smaller trees to
weight-vector assignments of bigger trees was used by Krauthgamer et al. [65]
to attain injectivity while embedding the vertices in Zd

∞. As we will explain
soon, the same technique helps us to make sure that the hypercubes corre-
sponding to non-adjacent vertex pairs do not intersect. The algorithm for
constructing a weight-vector assignment for E(T ) that separates every pair of
non-adjacent vertices of T is given below:

1. Using Lemma 3.6, construct cube representations of dimension
t = d22.77× ρ(T )e+ 2 for each of the subtrees belonging to Le ∪ Lo.

2. Using the correspondence given in Section 3.2.1 between cube representa-
tions and weight-vector assignments, for each tree F ∈ Ae∪Be∪Ao∪Bo,
compute a weight-vector assignment W F

e : E(F ) 7→ [−1, 1]t. Notice that⋃
F∈Ae E(F ) = E(T ) \ OA

e . Combine the weight-vector assignments of
trees in Ae as in Definition 3.3 and obtain WA

e : E(T ) \ OA
e 7→ [−1, 1]t.

Similarly, obtain WB
e : E(T ) \ OB

e 7→ [−1, 1]t from weight-vector assign-
ments of trees in Be, WA

o : E(T ) \ OA
o 7→ [−1, 1]t from weight-vector

assignments of trees F ∈ Ao and WB
o : E(T ) \ OB

o 7→ [−1, 1]t from
weight-vector assignments of trees in Bo.
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3. Set i = max(e, o) and repeat steps 3a to 3d while i > 1.

(a) For each edge uv belonging toE(T )\OA
i , assignWA

i−2(uv) = WA
i (uv)

and for each edge uv belonging to E(T ) \ OB
i , assign WB

i−2(uv) =
WB
i (uv).

(b) For each tree F ∈ Ai−2, do the following: For each edge uv of F
such that uv ∈ OA

i \ OA
i−2, WA

i−2(uv) is assigned a weight-vector
from {−1, 1}t, chosen uniformly at random. Now, each edge uv of
F has got a weight-vector under WA

i−2. For each vertex v of F ,
compute S(v) as the sum of weight-vectors on edges of the path in
F from the root of F to v, as given by WA

i−2. For each pair of non-
adjacent vertices u and v of F such that duv ≥ hi−1, check whether
‖S(v) − S(u)‖∞ > 1. Repeat Step 3b, until the above condition
becomes true simultaneously for all pair of non-adjacent vertices u
and v of F such that duv ≥ hi−1.

(c) For each tree F ∈ Bi−2, do the following: For each edge uv of F
such that uv ∈ OB

i \ OB
i−2, WB

i−2(uv) is assigned a weight-vector
from {−1, 1}t, chosen uniformly at random. Now, each edge uv of
F has got a weight-vector under WB

i−2. For each vertex v of F ,
compute S(v) as the sum of weight-vectors on edges of the path in
F from the root of F to v, as given by WB

i−2. For each pair of non-
adjacent vertices u and v of F such that duv ≥ hi−1, check whether
‖S(v) − S(u)‖∞ > 1. Repeat Step 3c, until the above condition
becomes true simultaneously for all pair of non-adjacent vertices u
and v of F such that duv ≥ hi−1.

(d) Set i = i− 1.

4. For each edge uv belonging to E(T ) \ OA
1 , assign W ′A

0 (uv) = WA
1 (uv)

and for each edge uv belonging to OA
1 , assign the all zeros vector to

W ′A
0 (uv). Similarly, for each edge uv belonging to E(T ) \ OB

1 , assign
W ′B

0 (uv) = WB
1 (uv) and for each edge uv belonging to OB

1 , assign the
all zeros vector to W ′B

0 (uv).

5. Output WA
0 ◦WB

0 ◦W ′A
0 ◦W ′B

0 , a weight-vector assignment from E(T )
to [−1, 1]4t obtained by concatenating the components of weight assign-
ments WA

0 , WB
0 , W ′A

0 and W ′B
0 together.

Property 3.2. WA
0 ◦WB

0 is a separating weight-vector assignment for every non-
adjacent pair of vertices u and v of T such that duv ≤ he or hi−1 ≤ duv ≤ hi−2,
for any even integer i such that e ≥ i ≥ 2. Similarly, W ′A

0 ◦W ′B
0 is a separating

weight-vector assignment for every non-adjacent pair of vertices u and v of T
such that duv ≤ ho or hi−1 ≤ duv ≤ hi−2, for any odd integer i such that
o ≥ i ≥ 3.
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Proof. Let u and v be two non-adjacent vertices in T . If duv ≤ he, by part 4
of Lemma 3.7, there exist at least one subtree F ∈ Le such that both u and
v belong to V (F ). In step 2 of the algorithm, we computed W F

e from a cube
representation of F , which is a separating weight-vector assignment by the
correspondence given in Lemma 3.1. If F ∈ Ae, then W F

e is one of the weight-
vector assignment from whichWA

e is derived, and on each edge of the path from
u to v in T , the weight-vector assigned byWA

e is the same as the weight-vector
assigned by W F

e . Since each edge xy of the path from u to v in T belongs to
E(T )\OA

e , in Step 3a the algorithm assignsWA
i−2(xy) = WA

i (xy) for each even
integer i where e ≥ i ≥ 2. Thus, finally we will have WA

0 (xy) = WA
e (xy) =

W F
e (xy). Therefore, by Property 3.1 it follows that WA

0 will be a separating
weight-vector assignment for u and v. By similar reasons, if F ∈ Be, WB

0 will
be a separating weight-vector assignment for u and v.

Similarly, if hi−1 ≤ duv ≤ hi−2, for any even integer i such that e ≥ i ≥ 2,
then by part 4 of Lemma 3.7 there exist at least one subtree F ∈ Li−2 such
that both u and v belong to V (F ). If F ∈ Ai−2, in step 3a of the algorithm
we would have made sure that WA

i−2 is a separating weight-vector assignment
for u and v. As in the earlier case, for each edge xy of the path from u to
v in T , WA

0 (xy) = WA
i−2(xy) and by Property 3.1, WA

0 will be a separating
weight-vector assignment for u and v. Similarly, if F ∈ Bi−2, WB

0 will be a
separating weight-vector assignment for u and v.

Thus, for every non-adjacent pair of vertices u and v of T such that duv ≤ he
or hi−1 ≤ duv ≤ hi−2 for any even integer i such that e ≥ i ≥ 2 one of WA

0 and
WB

0 is a separating weight-vector assignment, which implies that WA
0 ◦WB

0 is
a separating weight-vector assignment for u and v.

The proof of the second part of the lemma is similar. If u and v are non-
adjacent pairs of vertices of T such that duv ≤ ho or hi−1 ≤ duv ≤ hi−2, for any
odd integer i such that o ≥ i ≥ 3, then there exist at least one subtree F ∈ Li−2

such that both u and v belong to V (F ). If F ∈ Ai−2, we get W ′A
0 (xy) =

WA
1 (xy) = WA

i−2(xy) and if F ∈ Bi−2, we get W ′B
0 (xy) = WB

1 (xy) = WB
i−2(xy),

for each edge xy of the path from u to v in T . This implies that W ′A
0 ◦W ′B

0 is
a separating weight-vector assignment for u and v.

The following is a direct consequence of Property 3.2.

Theorem 3.8. W = WA
0 ◦ WB

0 ◦ W ′A
0 ◦ W ′B

0 is a separating weight-vector
assignment for each non-adjacent pair of vertices u and v of T . Here, W :
E(T ) 7→ [−1, 1]4t, where t = d22.77× ρ(T )e+ 2.

The following lemma will help us to calculate the expected number of times
the algorithm repeats Step 3b (or 3c) till it obtains a suitable weight-vector
assignment for a tree F ∈ Li−2, where e ≥ i ≥ 2.
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Lemma 3.9. Let i be such that hi ≥ 223 and i ≥ 2. Let Wi : E(T ) \ OA
i 7→

[−1, 1]t, where t = d22.77 × ρ(T )e + 2 and F ∈ Ai−2. Suppose for each edge
uv of F such that uv ∈ E(T ) \ OA

i , we set Wi−2(uv) = Wi(uv) and for each
edge uv of F such that uv ∈ OA

i \ OA
i−2, we assign Wi−2(uv) to be a vector

from {−1, 1}t chosen independently and uniformly at random. For each vertex
v of F , let SWi−2(v) be the sum of edge weights of the edges belonging to the
path from the root of F to v, as given by Wi−2. Then, with probability at
least p = 0.64, for every pair of non-adjacent vertices u and v of F such that
duv ≥ hi−1, ‖SWi−2(v)− SWi−2(u)‖∞ > 1.

Proof. Consider a pair of non-adjacent vertices u and v belonging to the vertex
set of the same rooted subtree F ∈ Ai−2 and duv ≥ hi−1. Let r be the root of
F . Since u and v both belong to the same subtree F ∈ Ai−2, all the edges in
the uv path fall in E(T )\OA

i−2. Therefore, all the edges in the uv path get their
weight-vectors assigned under Wi−2. But since duv ≥ hi−1 = hi

2 and hi ≥ 28

and each subtree in Ai has height at most 3hi, among the edges in the uv path,
at least hi

4 edges should belong to OA
i \ OA

i−2 and got their weights assigned
independently and uniformly at random from {−1, 1}t, as stated in the lemma.
The other edges on the uv path were already assigned values in Wi and these
values remain the same in Wi−2. Let u = v0, v1, v2, . . . , vq, vq+1 = v be the
path in T between u and v, where vj is the least common ancestor of u and v
in T . Also let Sk denote the kth coordinate function of SWi−2 and W k denote
the kth coordinate function of Wi−2. By property 3.1, for each 1 ≤ k ≤ t,
Sk(u) − Sk(v) = Xk + ck, where Xk = ∑

{0≤i≤j−1 and vivi+1∈OAi−2\O
A
i }
W k(xy) −∑

{j≤i≤q and vivi+1∈OAi−2\O
A
i }
W k(xy) and ck ∈ R is a constant, depending on the

weight vectors fixed by Wi for edges in the uv path that belong to E(T ) \OA
i .

Let l be the number of edges in the uv path that belong to E(T ) \OA
i .

We will bound the probability that |Sk(v) − Sk(u)| ≤ 1. Note that Xk

is the sum of l iid random variables, each of which is −1 or +1 with equal
probability. Therefore,

Pr(|Sk(v)− Sk(u)| ≤ 1) = Pr(Xk falls in the interval [−ck − 1,−ck + 1])

But since Xk can take only integer values and Xk can take at most two possible
values in [−ck − 1,−ck + 1] irrespective of whether l is even or odd, because
any interval of length two can contain at most two integers of the same parity.
Therefore, Pr(|Sk(v) − Sk(u)| ≤ 1) ≤ 2

(
l

d l2e
)
2−l. Since l ≥ hi

4 ≥ 26, using
Sterling’s approximation formula,

Pr(|Sk(v)− Sk(u)| ≤ 1) ≤ 1.61√
l
≤ 1.61√

hi
4

Pr(‖SWi−2(v)− SWi−2(u)‖∞ ≤ 1) ≤
1.61√

hi
4

t
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Since the height of F is at most 3hi−2, by Lemma 3.3, there are at most
2(6hi−2+1)ρ(T ) vertices in Ti and the number of non-adjacent pairs u, v ∈ V (F )
such that hi−1 ≤ duv ≤ 2×hi−1, is at most 4(6hi−2 + 1)ρ(T ) (2× 2hi−1 + 1)ρ(T ).

For each integer l where 1 ≤ l ≤ log(hi−1), let Pl denote the set consisting
of the non-adjacenct pairs u, v ∈ V (F ) such that 2l−1hi−1 ≤ duv ≤ 2lhi−1. Us-
ing Lemma 3.3, it is easy to see that for each integer l where 1 ≤ l ≤ log(hi−1),
|Pl| ≤ 4(6hi−2 + 1)ρ(T )

(
2l2hi−1 + 1

)ρ(T )
. Using similar arguments as given in

the previous paragraph, we also get the following:

For each pair (u, v) ∈ Pl,

Pr(‖SWi−2(v)− SWi−2(u)‖∞ ≤ 1) ≤
 1.61√

(2l−1 × hi
4 )

t

Applying union bound,

Pr(∃u, v ∈ V (F ) with duv ≥ hi−1 and ‖SWi−2(v)− SWi−2(u)‖∞ ≤ 1)

≤
log(hi−1)∑
l=1

|Pl|

 1.61√
(2l−1 × hi

4 )

t

≤
log(hi−1)∑
l=1

4(6hi−2 + 1)ρ(T )
(
2l2hi−1 + 1

)ρ(T )
 1.61√

(2l−1 × hi
4 )

t

≤ 8(6hi−2 + 1)ρ(T ) (2× 2hi−1 + 1)ρ(T )

1.61√
hi
4

t

≤ 0.33, since t ≥ d22.77× ρ(T )e+ 2, hi ≥ 223 and hi−2 = h2
i−1 = h4

i .

Therefore, with probability at least 0.67, for every pair of non-adjacent vertices
u and v of F such that duv ≥ hi−1, |Swi(v)− Swi(u)| > 1 for some k such that
1 ≤ k ≤ t.

Lemma 3.10. The expected number of times the algorithm repeats Step 3b (or
3c) till it obtains a suitable weight-vector assignment for a tree F ∈ Li−2 is at
most 1

0.67 for any i such that e ≥ i ≥ 2.

Theorem 3.11. For any T , we can compute a 4(d22.77×ρ(T )e+2)-dimensional
cube representation using a randomized algorithm which runs in time polyno-
mial in expectation. Cubicity of trees can be approximated within a constant
factor in deterministic polynomial time.

Proof. The second part of the theorem follows from the first part, because
ρ(T ) is a polynomial time computable function. Since by Lemma 3.1, in poly-
nomial time we can construct a d-dimensional cube representation of T from
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a weight-vector assignment W : E(T ) 7→ [−1, 1]d, it is enough to show that
the randomized algorithm we described here, for computing a weight-vector
assignment W : E(T ) 7→ [−1, 1]4t, where t = d22.77 × ρ(T )e + 2 runs in time
polynomial in expectation.

In any partition of the rooted tree T into smaller trees, there can be at most
O(n) rooted subtrees. Therefore, by Lemma 3.6, step 1 of the algorithm runs
in polynomial time. In step 2 of the algorithm, the weight-vector assignments
can be computed in polynomial time, by Lemma 3.1. The operation in step 2
of combining the weight assignments on smaller trees as given in Definition 3.3
can easily be done in polynomial time. By the definition of the recursive
decomposition, Step 3 is executed at most O(log log h) rounds, where h is the
height of the tree T . It is easy to see that the assignments in step 3a can
be done in polynomial time. By Lemma 3.10, for each round of execution of
step 3, steps 3b and 3c are repeated only constantly many times in expectation.
In each repetition, the algorithm does only a polynomial time operation. Steps
4 and 5 are simple assignments, which can be done in polynomial time.

3.4 Conclusion
In this chapter, we show that cubicity of trees can be approximated within a
constant factor, in deterministic polynomial time. As far as we know, this is
the first constant factor approximation algorithm known for cubicity of trees.
A corresponding cube representation of the tree can also be computed by a
randomized algorithm which runs in time polynomial in expectation. The ba-
sic techniques for the randomized algorithm are borrowed from the techniques
given by Krauthgamer et al. [65], for approximating the intrinsic dimension-
ality of trees. We feel that this is a surprising coincidence because as we
explained in Section 3.2.4, intrinsic dimensionality is quite different from cu-
bicity and neither the bounds of these parameters nor the proof techniques for
these problems work for each other in general. As far as we know, till now there
are no works connecting the parameters cubicity and intrinsic dimension.
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Chapter 4

Approximation algorithms for
boxicity and cubicity

The problem of computing boxicity (resp. cubicity) is known to
be inapproximable in polynomial time even for graph classes like
bipartite, co-bipartite and split graphs, within an O(n1−ε) factor
for any ε > 0, unless NP = ZPP. We1 prove that if a graph G

on n vertices has a clique on n − k vertices, then box(G) can be
computed in time n22O(k2 log k). Using this fact, various FPT ap-
proximation algorithms for boxicity are derived. The parameter
used is the vertex (or edge) edit distance of the input graph from
certain graph families of bounded boxicity - like interval graphs and
planar graphs. Using the same fact, we also derive an O

(
n
√

log logn√
logn

)
factor approximation algorithm for computing the boxicity and an
O
(
n(log logn)

3
2√

logn

)
factor approximation algorithm for computing the

cubicity. To our knowledge, these are the first o(n) factor approx-
imation algorithms for computing boxicity and cubicity of general
graphs. As a consequence of this result, a o(n) factor approx-
imation algorithm for computing the partial order dimension of
finite posets and a o(n) factor approximation algorithm for com-
puting the threshold dimension of split graphs would follow. We
also present an FPT approximation algorithm for computing the
cubicity of graphs, with vertex cover number as the parameter.

4.1 Introduction
Let G(V , E) be a graph. Recall that a set of interval graphs (resp. unit
interval graphs) {I1, I2, . . ., Ik} is called a box (resp. cube) representation of

1Joint work with Abhijin Adiga and L. Sunil Chandran. An initial version of this work
was presented in IPEC 2012.
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G of dimension k if I1, I2, . . ., Ik have the same vertex set V and E(G) =
E(I1) ∩ E(I2) ∩ · · · ∩ E(Ik) (See Definition 2.1). Also, the boxicity (resp.
cubicity) of an incomplete graph G, box(G) (respectively cub(G)), was defined
as the minimum integer k such that G has a box (resp. cube) representation
of dimension k. For a complete graph, it is defined to be zero.

The decision problem BOXICITY takes a graph on n vertices and an
integer b as inputs and asks whether box(G) ≤ b. Cozzens [38] proved that this
problem is NP-hard. In fact, determining whether box(G) ≤ 2 (resp. cub(G) ≤
2) is itself NP-hard ([64, 18]). Moreover, it is not possible to approximate
boxicity and cubicity within a factor of O(n1−ε) for any ε > 0 in polynomial
time unless NP = ZPP [25]. In this work, we present o(n) factor approximation
algorithms for computing boxicity and cubicity - the first of their kind, to our
knowledge.

Since NP-hard problems are often impractical to solve, it is natural to in-
troduce parameters along with the input, and design algorithms which run in
polynomial time for small values of the parameter. We say that a decision
problem with input size n and a parameter k is Fixed Parameter Tractable
(FPT) if the problem can be decided in time f(k) ·nO(1), for some computable
function f . Often, a similar terminology is used in the case of optimization
problems too. An FPT approximation algorithm is an approximation algo-
rithm that runs in f(k) · nO(1) time. For an introduction to parameterized
complexity, please refer to [74].

The standard parameterization of BOXICITY using boxicity itself as the
parameter k is meaningless since the problem is NP-hard even for k = 2. Pa-
rameterizations with vertex cover number (MVC), minimum feedback vertex
set size (FVS) and max leaf number as parameters were studied by Adiga et
al. [7]. With vertex cover number as the parameter k, they gave an algo-
rithm which computes boxicity exactly in 2O(2kk2)n time, and another algo-
rithm which gives an additive one approximation for boxicity in 2O(k2 log k)n

time, where n is the number of vertices in the graph. Using FVS as the pa-
rameter k, they gave a 2 + 2

box(G) factor approximation algorithm to compute
boxicity that runs in 2O(2kk2)nO(1) time. With max leaf number as the parame-
ter k, they gave an additive two approximation algorithm for boxicity that runs
in 2O(k3 log k)nO(1) time. In 2011, Ganian [52] showed that the FPT algorithms
and approximations for boxicity with parameter vertex cover can be easily gen-
eralized for the parameter twin cover. Very recently, Bruhn et al. [20] provided
additive one FPT algorithms for boxicity with the parameter pathwidth and
also with the parameter cluster vertex deletion number. Their algorithm for
boxicity with parameter pathwidth improves the previously known (including
one of our results in this chapter) approximation guarantee bound for boxicity
with the parameter maximum leaf number from additive two to additive one.

In this work, we consider vertex and edge edit distance from families of
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graphs of bounded boxicity as parameters. The notion of edit distance refers,
in general, to the smallest number of some well-defined modifications to be
applied to the input graph so that the resultant graph possesses some de-
sired properties. Edit distance from graph classes is a well-studied problem in
parameterized complexity [21, 57, 70, 97].

Cai [22] introduced a framework for parameterizing problems with edit
distance as the parameter. For a family F of graphs, and k ≥ 0 an integer, the
author used F+ke (respectively, F−ke) to denote the family of graphs that can
be converted to a graph in F by deleting (respectively, adding) at most k edges,
and F + kv to denote the family of graphs that can be converted to a graph
in F by deleting at most k vertices. Cai [22] considered the parameterized
complexity of the vertex coloring problem on F − ke, F + ke and F + kv

for various families F of graphs, with k as the parameter. This was further
studied by Marx [69].

In the same framework, we consider the parameterized complexity of com-
puting the boxicity of F + k1e − k2e and F + kv graphs for families F of
bounded boxicity graphs, using k1 + k2 and k as parameters. We will see
that many relevant parameters for the boxicity problem, including MVC and
FVS considered by Adiga et al. [7], are special cases of our parameters. We
provide an improved FPT algorithm with the parameter FVS and give FPT
approximation algorithms with some parameters smaller than MVC. With the
parameter max leaf number, our method achieves the same result as obtained
in Adiga et al. [7]. (See corollaries 1-7 for more details.)

We also give a factor-2 FPT approximation algorithm for cubicity, using
vertex cover number as the parameter. This can be improved to a (1+ε) factor
algorithm for any ε > 0, by sacrificing more on the running time.

4.2 Prerequisites
In this section, we give some basic facts necessary for the later part of this
chapter. For a vertex v ∈ V of a graph G, we use NG(v) to denote the set of
neighbors of v in G. We use G[S] to denote the induced subgraph of G(V,E)
on the vertex set S ⊆ V . If I is an interval representation of an interval graph
G(V,E), as in Chapter 2 we use lv(I) and rv(I) respectively to denote the left
and right end points of the interval corresponding to v ∈ V in I. The interval
corresponding to v is denoted as

[
lv(I), rv(I)

]
.

Lemma 4.1 (Roberts [78]). Let G(V, E) be any graph. For any x ∈ V ,
box(G) ≤ 1 + box(G \ {x}).

Lemma 4.2 and Lemma 4.3 given below are just restatements respectively of
Lemma 2.5 and Lemma 2.9 of Chapter 2, presented in a slightly different format
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suitable for this chapter. For easy reference, their proofs are also included here
with slight modifications.

Lemma 4.2. Let G(V,E) be a graph on n vertices. Let S ⊆ V be such that
∀v ∈ V \ S and u ∈ V such that u 6= v, (u, v) ∈ E. If a k-dimensional box
representation BS of G[S] is known, then, in O(kn) time we can construct a
box representation B of G of dimension |BS|. Moreover, box(G) = box(G[S]).

Proof. Let BS = {I1, I2, . . ., Ip} be a box representation ofG[S]. For 1 ≤ i ≤ p,
let li = min

u∈S
lu(Ii) and ri = max

u∈S
ru(Ii). For 1 ≤ i ≤ p define I ′i by the interval

assignment

[lv(I ′i), rv(I ′i)] =

[lv(Ii), rv(Ii)] if v ∈ S,
[li, ri] if v ∈ V \ S.

It is easy to see that B2 = {I ′1, I ′2, . . ., I ′p} is a box representation of G and
box(G) ≤ box(G[S]). Since G[S] is an induced subgraph of G, we also have
box(G) ≥ box(G[S]). The whole construction can be done in O(kn) time.

Lemma 4.3. Let G(V,E) be a graph on n vertices and let A ⊆ V . Let
G1(V,E1) be a supergraph of G with E1 = E ∪ {(x, y) | x, y ∈ A, x 6= y}. If a
box representation B of G is known, then in O(b·n) time we can construct a box
representation B1 of G1 of dimension 2|B|. In particular, box(G1) ≤ 2 box(G).

Proof. Let B = {I1, I2, . . ., Ib} be a box representation of G. For each 1 ≤ i ≤
b, let li = min

u∈V
lu(Ii) and ri = max

u∈V
ru(Ii). For 1 ≤ i ≤ b, let Ii1 be the interval

graph obtained from Ii by assigning the intervals

[lv(Ii1), rv(Ii1)] =

[li, rv(Ii)] if v ∈ A,
[lv(Ii), rv(Ii)] if v ∈ V \ A.

and let Ii2 be the interval graph obtained from Ii by assigning the intervals

[lv(Ii2), rv(Ii2)] =

[lv(Ii), ri] if v ∈ A,
[lv(Ii), rv(Ii)] if v ∈ V \ A.

It is easy to see that this construction can be done in O(b · n) time.
Note that, in constructing Ii1 and Ii2 we have only extended some of the

intervals of Ii and therefore, Ii1 and Ii2 are supergraphs of Ii and in turn of
G. By construction, A induces cliques in both Ii1 and Ii2 , and thus they are
supergraphs of G1 too.

Now, consider (u, v) /∈ E with u ∈ V \ A, v ∈ A. Then ∃i ∈ {1, 2, . . . , b}
such that either rv(Ii) < lu(Ii) or ru(Ii) < lv(Ii). If rv(Ii) < lu(Ii), then clearly
the intervals [li, rv(Ii)] and [lu(Ii), ru(Ii)] do not intersect and thus (u, v) /∈
E(Ii1). Similarly, if ru(Ii) < lv(Ii), then (u, v) /∈ E(Ii2). If both u, v ∈ V \ A
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and (u, v) /∈ E, then ∃i such that (u, v) /∈ E(Ii) for some 1 ≤ i ≤ b and clearly
by construction, (u, v) /∈ E(Ii1) and (u, v) /∈ E(Ii2).

It follows that G1 = ⋂
1≤i≤b Ii1 ∩ Ii2 and B1 = {I11 , I12 , I21 , I22 , . . ., Ib1 ,

Ib2} is a box representation of G1 of dimension 2b. If |B| = box(G) to start
with, then we get |B′| ≤ 2 box(G). Therefore, box(G1) ≤ 2 box(G).

We know that there are at most 2O(nb logn) distinct b-dimensional box rep-
resentations of a graph G on n vertices and all these can be enumerated in
time 2O(nb logn) [7, Proposition 1]. In linear time, it is also possible to check
whether a given graph is a unit interval graph and if so, generate a unit interval
representation of it [16]. Hence, a similar result holds for cubicity as well.

Proposition 4.1. Let G(V,E) be a graph on n vertices of boxicity (resp. cubic-
ity) b. Then an optimal box (resp. cube) representation of G can be computed
in 2O(nb logn) time.

If S ⊆ V induces a clique in G, then it is easy to see that the intersection of
all the intervals in I corresponding to vertices of S is nonempty. This property
is referred to as the Helly property of intervals and we refer to this common
region of intervals as the Helly region of the clique S.

Definition 4.1. Let G(V,E) be a graph in which S ⊆ V induces a clique in
G. Let H(V,E ′) be an interval supergraph of G. Let p be a point on the real
line. If H has an interval representation I satisfying the following conditions:

(1) p belongs to the Helly region of S in I.

(2) The end points of intervals corresponding to vertices of V \ S are all
distinct in I.

(3) For each v ∈ S,

lv(I) = min
(
p, min

u∈NG(v)∩(V \S)
ru(I)

)
and

rv(I) = max
(
p, max

u∈NG(v)∩(V \S)
lu(I)

)

then we call I a nice interval representation of H with respect to S and p. If
H has a nice interval representation with respect to clique S and some point
p, then H is called a nice interval supergraph of G with respect to clique S.

Lemma 4.4. Let G be a graph on n vertices, with its vertices arbitrarily labeled
as 1, 2, . . . , n. If G contains a clique of size n− k or more, then :

(a) A subset A ⊆ V such that |A| ≤ k and G[V \ A] is a clique, can be
computed in O(n2k) time.

(b) There are at most 2O(k log k) nice interval supergraphs of G with respect to
the clique V \ A. These can be enumerated in n22O(k log k) time.
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(c) If G has a box representation B of dimension b, then it has a box repre-
sentation B′ of the same dimension, in which ∀I ∈ B′, I is a nice interval
supergraph of G with respect to the clique V \ A.

(d) By construction, vertices of the nice interval supergraphs obtained in (b)
and (c) retain their original labels as in G.

Proof. (a) We know that, if G contains a clique of size n−k or more, then the
complement graph G has a vertex cover of size at most k. We can compute
a minimum vertex cover A of G in O(n2k) time [74]. We have |A| ≤ k and
G[V \ A] is a clique because V \ A is an independent set in G.
(b) Let H be any nice interval supergraph of G with respect to V \A. Let I be
a nice interval representation of H with respect to V \A and a point p. Let P
be the set of end points (both left and right) of the intervals corresponding to
vertices of A in H. Clearly |P | = 2|A| ≤ 2k. The order of end points of vertices
of A in I from left to right corresponds to a permutation of elements of P and
therefore, there are at most (2k)! possibilities for this ordering. Moreover,
note that the points of P divide the real line into |P | + 1 regions and that
p can belong to any of these regions. From the definition of nice interval
representation, it is clear that, once the point p and the end points of vertices
of A are fixed, the end points of vertices in V \ A get automatically decided.

Thus, to enumerate every nice interval supergraph H of G with respect to
clique V \ A, it is enough to enumerate all the (2k)! = 2O(k log k) permutations
of elements of P and consider |P | + 1 ≤ 2k + 1 possible placements of p in
each of them. Some of these orderings may not produce an interval supergraph
of G though. In O(k2) time, we can check whether the resultant graph is an
interval supergraph of G and output the interval representation in O(n) time.
The number of supergraphs enumerated is only (2k + 1)2O(k log k) = 2O(k log k).
(c) Let B = {I1, I2, . . ., Ib} be a box representation of G. Without loss of
generality, we can assume that all 2|V | interval end points are distinct in Ii,
for 1 ≤ i ≤ b. (Otherwise, we can always alter the end points locally and
make them distinct.) Let pi ∈ R be a point belonging to the Helly region
corresponding to V \ A in Ii. For 1 ≤ i ≤ b, let I ′i be the interval graph
defined by the interval assignments given below. Vertices of I ′i are assigned
their original labels as in Ii.

[lv(I ′i), rv(I ′i)] =

[lv(Ii), rv(Ii)] if v ∈ A,
[l′v(i), r′v(i)] if v ∈ V \ A.

where l′v(i) = min
(
pi, min

u∈NG(v)∩A
ru(Ii)

)
and r′v(i) = max

(
pi, max

u∈NG(v)∩A
lu(Ii)

)
.

Claim 4.4.1. B′ = {I ′1, I ′2, . . ., I ′b} is a box representation of G such that
∀I ′i ∈ B′, I ′i is a nice interval supergraph of G with respect to clique V \ A.



4.3. Boxicity of graphs with large cliques 65

Proof. Consider any I ′i ∈ B′. For u, v ∈ A, intervals corresponding to u and
v are the same in both Ii and I ′i. If (u, v) ∈ E(G), with u, v ∈ A, then the
intervals corresponding to u and v intersect in I ′i because they were intersecting
in Ii. For any (u, v) ∈ E(G), with u ∈ A and v ∈ V \ A, the interval of v
intersects the interval of u in I ′i, by the definition of [l′v(i), r′v(i)]. Vertices of
V \ A share the common point pi. Thus, I ′i is an interval supergraph of G. It
is easy to see that I ′i is a nice interval supergraph of G with respect to clique
V \ A and point pi.

Since B is a valid box representation of G, for each (u, v) /∈ E(G), ∃Ii ∈ B
such that (u, v) /∈ E(Ii). Observe that for any vertex v ∈ V , the interval
of v in Ii contains the interval of v in I ′i. Therefore, if (u, v) /∈ E(Ii), then
(u, v) /∈ E(I ′i) too. Thus, B′ is also a valid box representation of G.

(d) Since vertices ofG are labeled 1, 2, . . . , n initially (specified at the begin-
ning of the statement of this lemma), we just need to retain the same labeling
of vertices during the definition and construction of nice interval supergraphs
of G. (We have included this obvious fact in the statement of the lemma, just
to give better clarity.)

4.3 Boxicity of graphs with large cliques
One of the central ideas in this chapter is the following theorem about comput-
ing the boxicity of graphs which contain very large cliques. Using this theorem,
in Section 4.4 we derive o(n) factor approximation algorithms for computing
the boxicity and cubicity of graphs. Further, it is used in Section 4.5 to derive
parameterized approximation algorithm for the boxicity problem parameter-
ized by vertex edit distance from a family of graphs of bounded boxicity.

Theorem 4.5. Let G be a graph on n vertices, containing a clique of size n−k
or more. Then, box(G) ≤ k and an optimal box representation of G can be
found in time n22O(k2 log k).

Proof. Let G(V,E) be a graph on n vertices containing a clique of size n − k
or more. Arbitrarily label the vertices of G as 1, 2, . . . , n. Using part (a)
of Lemma 4.4, we can compute in O(n2k) time, A ⊆ V such that |A| ≤ k

and G[V \ A] is a clique. It is easy to infer from Lemma 4.1 that box(G) ≤
box(G \ A) + |A| = k, since box(G \ A) = 0 by definition.

From part (c) of Lemma 4.4, we get that, if box(G) = b, then there exists a
box representation B′ = {I ′1, I ′2, . . ., I ′b} of G in which each I ′i is a nice interval
supergraph of G with respect to clique V \A. We call such a representation a
nice box representation of G with respect to clique V \A. To construct a nice
box representation of G with respect to clique V \ A and of dimension d, we
choose d of the 2O(k log k) nice interval supergraphs of G with respect to clique



66 Chapter 4. Approximation algorithms for boxicity and cubicity

V \ A (guaranteed by part (b) of Lemma 4.4) and check if this gives a valid
box representation of G. This validation is straightforward because vertices in
supergraphs being considered retain their original labels as in G by part (d)
of Lemma 4.4. All possible nice box representations of dimension d can be
computed and validated in n22O(k·d log k) time. We might have to repeat this
process for 1 ≤ d ≤ b in that order, to obtain an optimal box representation.
Hence the total time required to compute an optimal box representation of G
is bn22O(k·b log k), which is n22O(k2 log k), because b ≤ k by the first part of this
theorem.

Remark 4.1. Theorem 4.5 gives an FPT algorithm for computing the boxicity
of G, with the parameter k = MVC(G), where G is the graph complement of
G.

4.4 Approximation algorithms for computing
boxicity and cubicity

In this section, we use Theorem 4.5 and derive o(n) factor approximation
algorithms for boxicity and cubicity. Let G(V,E) be the given graph with
|V | = n. Without loss of generality, we can assume that G is connected. Let
k =

√
logn√

log logn and t = dn
k
e. The algorithm proceeds by defining t supergraphs

of G and computing their optimal box representations. Let the vertex set V
be partitioned arbitrarily into t sets V1, V2, . . . , Vt where |Vi| ≤ k, for each
1 ≤ i ≤ t. We define supergraphs G1, G2, . . . , Gt of G with Gi(V,Ei) defined
by setting Ei = E ∪ {(x, y)|x, y ∈ V \ Vi}, for 1 ≤ i ≤ t.

Lemma 4.6. Let Gi be as defined above, for 1 ≤ i ≤ t. An optimal box
representation Bi of Gi can be computed in nO(1) time, where n = |V |.

Proof. Noting thatG[V \Vi] is a clique and |Vi| ≤ k =
√

logn√
log logn , by Theorem 4.5,

we can compute an optimal box representation Bi of Gi in n22O(k2 log k) = nO(1)

time, where n = |V |.

Lemma 4.7. Let Bi be as computed above, for 1 ≤ i ≤ t. Then, B =
⋃

1≤i≤t
Bi

is a valid box representation of G such that |B| ≤ t′ box(G), where t′ is
O
(
n
√

log logn√
logn

)
. The box representation B is computable in nO(1) time.

Proof. We can compute optimal box representations Bi of Gi, for 1 ≤ i ≤
t =

⌈
n
√

log logn√
logn

⌉
as explained in Lemma 4.6 in total nO(1) time. Observe that

E(G) = E(G1) ∩ E(G2) ∩ · · · ∩ E(Gt). Therefore, it is a trivial observation
that the union B =

⋃
1≤i≤t

Bi gives us a valid box representation of G.

We will prove that this representation gives the approximation ratio as
required. By Lemma 4.3 we have, |Bi| = box(Gi) ≤ 2 box(G). Hence, |B| =
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∑t
i=1 |Bi| ≤ 2t box(G). Substituting t =

⌈
n
√

log logn√
logn

⌉
in this inequality gives the

approximation ratio as required.

The box representation B obtained from Lemma 4.7 can be extended to a
cube representation C of G as stated in the following lemma.

Lemma 4.8. A cube representation C of G, such that |C| ≤ t′ cub(G), where
t′ is O

(
n(log logn)

3
2√

logn

)
, can be computed in nO(1) time.

Proof. We can compute optimal box representations Bi of Gi, for 1 ≤ i ≤ t =⌈
n
√

log logn√
logn

⌉
as explained in Lemma 4.6 in O(n4) time. By [5, Corollary 2.1] we

know that, from an optimal box representation Bi of Gi, in O(n2) time, we
can construct a cube representation Ci of Gi of dimension box(Gi)dlogα(Gi)e,
where α(Gi) is the independence number of Gi which is at most |Vi|. (Recall
the assumption that G is connected.)

It is easy to see that C =
⋃

1≤i≤t
Ci gives us a valid cube representation of G.

We will prove that this cube representation gives the approximation ratio as
required.

|C| =
t∑
i=1
|Ci| ≤

t∑
i=1
|Bi|dlogα(Gi)e ≤

t∑
i=1
|Bi|dlog ke

≤ 2t box(G)O(log log n) ≤ O(t log log n) cub(G) (4.1)

Substituting t =
⌈
n
√

log logn√
logn

⌉
in the inequality above gives the approximation

ratio as required.

Combining Lemma 4.7 and Lemma 4.8, we get the following theorem which
gives o(n) factor approximation algorithms for computing boxicity and cubic-
ity.

Theorem 4.9. Let G(V,E) be a graph on n vertices. Then a box represen-
tation B of G, such that |B| ≤ t box(G), where t is O

(
n
√

log logn√
logn

)
, can be

computed in polynomial time. Further, a cube representation C of G, such that
|C| ≤ t′ cub(G), where t′ is O

(
n(log logn)

3
2√

logn

)
, can also be computed in polynomial

time.

Now, we use Theorem 4.9 and derive sublinear approximation algorithms
for some other dimensional parameters closely related to boxicity.

4.4.1 Partial order dimension
A partially ordered set (poset) P = (X,P ) consists of a nonempty set X and a
binary relation P on X that is reflexive, antisymmetric and transitive. If every
pair of distinct elements ofX are comparable under the relation P , then (X,P )
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is called a total order or a linear order. A linear extension of a partial order
(X,P ) is a linear order (X,P ′) such that ∀x, y ∈ X, (x, y) ∈ P ⇒ (x, y) ∈ P ′.
The dimension of a poset P = (X,P ), denoted by dim(P) is defined as the
smallest integer k such that P can be expressed as the intersection of k linear
extensions (X,P1), (X,P2), . . . , (X,Pk) of P : i.e., if ∀x, y ∈ X, (x, y) ∈ P ⇔
(x, y) ∈ Pi, for each 1 ≤ i ≤ k. This concept was introduced by Dushnik and
Miller in 1941 [43].

A height-two poset is a poset (X,P ) in which all elements of X are either
minimal elements or maximal elements under the relation P . Even in the case
of height-two posets, partial order dimension is hard to approximate within an
O(n1−ε) factor for any ε > 0, unless NP = ZPP [25].

Corollary 4.10. There is a polynomial time algorithm to approximate the
partial order dimension of any poset P = (X,P ) defined on a finite set X,
within an o(n) factor, where n = |X|.

Proof. Assume that P = (X,P ) defined on a finite set X.
We will first prove the statement for height-two posets. Adiga et al. [4]

showed that if P is a height-two poset defined on a finite set X and GP is
the underlying comparability graph of P (i.e., X is the vertex set of GP and
two vertices are adjacent in GP if and only if they are comparable under P ),
then box(GP ) ≤ dim(P) ≤ 2 box(GP ). Since box(GP ) can be approximated
in polynomial time within an o(n) factor by Theorem 4.9, a polynomial time
o(n) factor approximation algorithm for computing the poset dimension of
height-two posets follows.

By a construction given by R. Kimble [92], given a poset P = (X,P ) of
arbitrary height, we can construct a height-two poset P ′ = (S(X), P ′) from
P = (X,P ) in polynomial time so that dim(P) ≤ dim(P ′) ≤ 1 + dim(P).
Combined with this reduction, the polynomial time o(n) factor approximation
algorithm we obtained in the previous paragraph for height-two posets gets
extended for posets of arbitrary height.

4.4.2 Threshold dimension of split graphs
A graph G(V,E) is called a threshold graph if there exists s ∈ R and a labeling
of vertices w : V 7→ R such that ∀u, v ∈ V, (u, v) ∈ E ⇔ w(u) + w(v) ≥ s.
The threshold dimension of G, denoted by t(G) is the minimum integer k such
that there exists threshold graphs G1, G2, . . . , Gk on the same vertex set as
V (G) with E(G) = E(G1) ∪ E(G2) ∪ · · · ∪ E(Gk). The concept of threshold
graphs and threshold dimension was introduced by Chvátal and Hammer [36]
while studying some set-packing problems. Threshold dimension is also hard
to approximate within an O(n1−ε) factor for any ε > 0, unless NP = ZPP [25].
The same hardness result holds for the restricted case of split graphs as well
[3].
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Corollary 4.11. There is a polynomial time algorithm to approximate the
threshold dimension of any split graph G within an o(n) factor, where n =
|V (G)|.

Proof. Given any split graphG, Adiga et al. [3] gave a polynomial time method
to construct another split graph H on the same vertex set such that t(G) =
box(H). By Theorem 4.9, the result follows.

4.5 Computing the boxicity of graphs with edit
distances as the parameter

In this section we give parameterized approximation algorithms for the boxicity
problem parameterized by various vertex (edge) edit distance parameters. A
subset S ⊆ V such that |S| ≤ k is called a modulator for an F + kv graph
G(V,E) if G\S ∈ F . Similarly, a set Ek of pairs of vertices such that |Ek| ≤ k

is called a modulator for an F − ke graph G(V,E) if G′(V,E ∪ Ek) ∈ F .
Modulators for graphs in F + ke and F + k1e − k2e are defined in a similar
manner. The following theorem is gives us a parameterized algorithm for
computing the boxicity of F + kv graphs.

Theorem 4.12. Let F be a family of graphs such that ∀G′ ∈ F , box(G′) ≤
b ≤ n. Let T (n) denote the time required to compute a b-dimensional box
representation of a graph belonging to F on n vertices. Let G be an F + kv

graph on n vertices. Given a modulator of G, a box representation B of G,
such that |B| ≤ 2 box(G) + b can be computed in time T (n− k) + n22O(k2 log k).

Proof. Let F be the family of graphs of boxicity at most b. Let G(V,E) be an
F + kv graph on n vertices, with a modulator Sk on k vertices such that G′ =
G\Sk ∈ F . We define two supergraphs of G, namely H1(V,E1) and H2(V,E2)
such that E = E1 ∩ E2 with box(H1) ≤ 2 box(G), box(H2) ≤ b and their
required valid box representations are computable within the time specified in
the theorem. It is easy to see that the union of valid box representations of H1

and H2 will be a valid box representation B of G and hence |B| ≤ box(H1) +
box(H2) ≤ 2 box(G) + b. This will complete our proof of Theorem 4.12.

We define H1 to be the graph obtained from G by making V \ Sk a clique
on n − k vertices, without altering other adjacencies in G. Formally, E1 =
E ∪ {(x, y) | x, y ∈ V \ Sk, x 6= y}. Using Theorem 4.5, we can get an
optimal box representation B1 of H1 in n22O(k2 log k) time. By Lemma 4.3,
|B1| ≤ 2 box(G).

We define H2 to be the graph obtained from G by making each vertex in
Sk adjacent to every other vertex in the graph and leaving other adjacencies in
G unaltered. Formally, E2 = E ∪ {(x, y) | x ∈ Sk, y ∈ V, x 6= y}. Let B′ be a
box representation of G′ of dimension at most b (computed in time T (n− k)).
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Then, B′ is a box representation of H2[V \Sk] as well, because H2[V \Sk] = G′.
By Lemma 4.2, box(H2) = box(H2[V \Sk]) and a box representation B2 of H2

of dimension at most |B′| ≤ b can be produced in O(n2) time.
Since G = H1 ∩ H2, B = B1 ∪ B2 is a valid box representation of G, of

dimension at most 2 box(G) + b. All computations were done in T (n − k) +
n22O(k2 log k) time.

Using a similar method, we also get a parameterized approximation algo-
rithm for computing the boxicity of F + k1e− k2e graphs.

Theorem 4.13. Let F be a family of graphs such that ∀G′ ∈ F , box(G′) ≤
b ≤ n. Let T (n) denote the time required to compute a b-dimensional box
representation of a graph belonging to F on n vertices. Let G be an F+k1e−k2e

graph on n vertices and let k = k1 + k2. Given a modulator of G, a box
representation B of G, such that |B| ≤ box(G) + 2b, can be computed in time
T (n) +O(n2) + 2O(k2 log k).

Proof. Let F be the family of graphs of boxicity at most b. Let G(V,E) be
an F + k1e− k2e graph on n vertices, where k1 + k2 = k. Let Ek1 ∪ Ek2 be a
modulator ofG such that |Ek1| = k1, |Ek2| = k2 andG′(V, (E ∪ Ek2)\Ek1) ∈ F .
Let T ⊆ V (G) be the set of vertices incident with edges in Ek1 ∪ Ek2 .

As in the proof of Theorem 4.12, we define two supergraphs of G, namely
H1(V,E1) and H2(V,E2) such that E = E1∩E2 with box(H1) ≤ 2b, box(H2) ≤
box(G) and their required valid box representations are computable within the
time specified in the theorem. As earlier, the union of valid box representa-
tions of H1 and H2 will be a valid box representation of B of G and hence
|B| ≤ box(H1) + box(H2) ≤ 2b + box(G). This will complete our proof of
Theorem 4.13.

Let H1(V,E1) be the graph obtained from G′ by making T a clique, without
altering other adjacencies in G′. Formally, E1 = E ′ ∪ {(x, y)|x, y ∈ T, x 6= y}.
Let B′ be a box representation of G′ of dimension at most b computed in time
T (n). From the box representation B′ of G′, in O(b · n)=O(n2) time we can
construct (by Lemma 4.3) a box representation B1 of H1 with dimension 2b.

Let H2(V,E2) be the graph obtained from G by making each vertex in
V \ T adjacent to every other vertex in the graph and leaving other adjacen-
cies in G unaltered. Formally, E2 = E ∪ {(x, y)|x ∈ V \ T, y ∈ V, x 6= y}.
Clearly, |T | ≤ 2k and therefore, using the construction in Proposition 4.1,
an optimal box representation BT of H2[T ] can be computed in 2O(k2 log k)

time. By Lemma 4.2, box(H2) = box(H2[T ]) and a box representation B2

of H2 of dimension box(H2[T ]) can be computed from the box representa-
tion BT of H2[T ] in O(n2) time. Observe that H2[T ] = G[T ]. Therefore,
|B2| = box(G[T ]) ≤ box(G), because G[T ] is an induced subgraph of G.

Since G = H1 ∩ H2, B = B1 ∪ B2 is a valid box representation of G, of
dimension at most box(G)+2b. All computations were done in T (n)+O(n2)+
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2O(k2 log k) time.

Remark 4.2. Though in Theorem 4.12 and Theorem 4.13 we assumed that
a modulator of G for F is given, in several important special cases (as in the
case of corollaries discussed below), the modulator for F can be computed from
G in FPT time. Moreover, in those cases, T (n) is a polynomial in n. Thus,
the algorithms given by Theorem 4.12 and Theorem 4.13 turns out to be FPT
approximation algorithms for boxicity.

4.5.1 Corollaries of Theorem 4.12 and Theorem 4.13

FPT approximation algorithms for computing boxicity with various parame-
ters of interest result as consequences of Theorem 4.12. It is easy to see that
these parameters are special cases of the vertex edit distance parameter. The
general procedure is:

(i) Use known FPT algorithms to compute the parameter of interest and
obtain the modulator Sk for the corresponding family F .

(ii) Compute a low dimensional box representation for the graph G′ = (G \
Sk) ∈ F , in polynomial time.

(iii) Use our algorithm of Theorem 4.12 to get the FPT approximation algo-
rithm for computing boxicity with the parameter of interest.

Some corollaries of Theorem 4.12 are discussed below.

Corollary 4.14. FVS as the parameter: The minimum number of vertices to
be deleted from a graph G so that the resultant graph is acyclic is called the
feedback vertex set size (FVS) of G. If FV S(G) ≤ k, we get a

(
2 + 2

box(G)

)
factor approximation for boxicity with FVS as the parameter k, which runs in
time 2O(k2 log k)nO(1).

Proof. If FV S(G) ≤ k, using existing FPT algorithms [24], in O(3.83kkn2)
time we can compute a minimum feedback vertex set S of G(V,E) such that
G′ = G(V \S) is a forest. Thus, with modulator S, G ∈ F+kv, where F is the
family of graphs which are forests. Since a box representation of dimension two
can be computed in polynomial time for any forest [83], using our algorithm
of Theorem 4.12, we get a 2 + 2

box(G) factor approximation for boxicity with
FVS as the parameter k, which runs in time 2O(k2 log k)nO(1).

Remark 4.3. Note that, for the boxicity problem parameterized by FVS, the
algorithm in Adiga et al. [7] gave the same approximation factor but with
running time 2O(2kk2)nO(1). Our algorithm gives a better running time.
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Corollary 4.15. Proper Interval Vertex Deletion number (PIVD) as the pa-
rameter: The minimum number of vertices to be deleted from the graph G,
so that the resultant graph is a proper interval graph, is called PIV D(G). If
PIV D(G) ≤ k, we get a 2 + 1

box(G) factor approximation for boxicity with
PIVD as the parameter k, which runs in time 2O(k2 log k)nO(1).

Proof. If PIV D(G) is at most k, we can use the FPT algorithm running in
O(6kkn6) time for proper interval vertex deletion [96] to compute a S ⊆ V

with |S| ≤ k such that G \S is a proper interval graph. Thus, with modulator
S, G ∈ F + kv, where F is the family of all proper interval graphs. Since a
box representation of dimension one can be computed in polynomial time for
any proper interval graph [16], using our algorithm of Theorem 4.12, we get
a 2 + 1

box(G) factor approximation for boxicity with PIVD as the parameter k,
which runs in time 2O(k2 log k)nO(1).

Remark 4.4. It is easy to see that PIV D(G) ≤MVC(G). Hence, PIV D(G)
is a better parameter than the parameterMVC(G) discussed in Adiga et al. [7].
Our algorithm has the same running time as the additive one approximation
algorithm with MVC(G) as the parameter, discussed in Adiga et al. [7].

Corollary 4.16. Planar Vertex Deletion number (PVD) as the parameter:
The minimum number of vertices to be deleted from G to make it a planar
graph, is called the planar vertex deletion number of G. If PV D(G) ≤ k, we
get an FPT algorithm for boxicity, giving a

(
2 + 3

box(G)

)
factor approximation

for boxicity using planar vertex deletion number as the parameter.

Proof. If G ∈ Planar+kv, we can use the FPT algorithm running in O(f(k)n2)
time for planar deletion [70] to compute a S ⊆ V with |S| ≤ k such that G \S
is planar. Thus, with modulator S, G ∈ F + kv, where F is the family of
planar graphs. Since planar graphs have 3 dimensional box representations
computable in polynomial time [91], using our algorithm of Theorem 4.12, we
get an FPT algorithm for boxicity, giving a 2 + 3

box(G) factor approximation
for boxicity of graphs that can be made planar by deleting at most k vertices,
using planar vertex deletion number as the parameter.

Theorem 4.13 also gives us FPT approximation algorithms for computing
boxicity with various parameters of interest.

Corollary 4.17. Interval Completion number as the parameter: The mini-
mum number of edges to be added to a graph G, so that the resultant graph is
an interval graph, is called the interval completion number of G. If the interval
completion number G is at most k, we get an FPT algorithm that achieves an
additive 2 approximation for box(G) which runs in time 2O(k2 log k)nO(1).
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Proof. If the interval completion number of a graph G(V,E) is at most k,
we can use the FPT algorithm for interval completion [97] with running time
O(k2knO(1)) = 2O(k log k)nO(1) to compute Ek such that |Ek| ≤ k and G′(V,E ∪
Ek) is an interval graph. Thus, with modulator Ek, G ∈ F − ke, where F is
the class of interval graphs. Since a box representation of dimension one can
be computed in polynomial time for any interval graph [16], combining with
our algorithm of Theorem 4.13, we get an FPT algorithm that achieves an
additive 2 factor approximation for box(G), with interval completion number
k as the parameter which runs in time 2O(k2 log k)nO(1).

Corollary 4.18. Proper Interval Edge Deletion number (PIED) as the param-
eter: The minimum number of edges to be deleted from the graph G, so that the
resultant graph is a proper interval graph, is called PIED(G). If PIED(G)
is at most k, we get an FPT algorithm that achieves an additive 2 approxi-
mation for box(G), with PIED(G) as the parameter k, which runs in time
2O(k2 log k)nO(1).

Proof. If PIED(G) is at most k, we can use the FPT algorithm running in
O(9knO(1)) time for proper interval edge deletion [96] to compute a Ek ⊆ E

with |Ek| ≤ k such that G′(V,E \ Ek) is a proper interval graph. Thus, with
modulator S, G ∈ F + ke, where F is the family of all proper interval graphs.
Since a box representation of dimension one can be computed in polynomial
time for any interval graph, combining with our algorithm of Theorem 4.13,
we get an FPT algorithm that achieves an additive 2 factor approximation for
box(G), with PIED as the parameter k, which runs in time 2O(k2 log k)nO(1).

Corollary 4.19. Planar Edge Deletion number (PED) as the parameter: The
minimum number of edges to be deleted from G so that the resultant graph is
planar is called PED(G). If PED(G) ≤ k, we get an FPT algorithm that
gives an additive 6 approximation for box(G) with PED(G) as the parameter.

Proof. If PED(G) ≤ k, we can use the FPT algorithm for planar edge dele-
tion [57] to compute Ek ⊆ E such that |Ek| ≤ k and G′(V,E \Ek) is a planar
graph. Thus, with modulator Ek, G ∈ F + ke, where F is the class of planar
graphs. Since planar graphs have 3 dimensional box representations com-
putable in polynomial time [91], using our algorithm of Theorem 4.13, we get
an FPT algorithm that gives an additive 6-factor approximation for box(G)
with PED(G) as the parameter.

Corollary 4.20. Max Leaf number (ML) as the parameter: The number of the
maximum possible leaves in any spanning tree of a graph G is called ML(G).
If ML(G) ≤ k, we get an FPT algorithm that achieves an additive 2 approxi-
mation for box(G) which runs in time 2O(k3 log k)nO(1).
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Proof. The underlying algorithm here is precisely that of Section 4.5. However,
we adopt some of the ideas used in the proof given in Adiga et al. [7, Section
4] for our proof.

We assume that G is connected and the max leaf number of G is at most k.
If the graph G is just a cycle on n vertices (n ≥ 3), we know that box(G) = 1 if
n = 3 and box(G) = 2 if n > 3. Thus, we can also assume that G is not a cycle.
Moreover, the maximum degree of any vertex in G is at most k; otherwise we
can start with a vertex of degree at least k + 1 and grow it to a spanning tree
with more than k leaves, which is a contradiction.

In Section 4.5, interval supergraphs H1 and H2 were obtained by modifying
a certain graph G′ whose edge edit distance to G is small. Here, we will define
G′ in a slightly different way and then define H1 and H2 in a similar way as
we did in Section 4.5.

We start by defining a graph G1, such that G is a subdivision of G1. For
this, we use the following result.

Property 4.1 (Fellows et al. [48]). If the max leaf number of a graph G is at
most k, then G is a subdivision of a graph G1(V ′, F ) with |V ′| ≤ 4k − 2 and
V ′ ⊆ V . (G1 may contain multi edges and self loops.)

Let G1(V ′, F ) the graph given by Property 4.1. Since G is not a cycle, we
can eliminate all degree two vertices from G1 one by one, by edge contractions.
Therefore, without loss of generality, we can assume that there are no degree
two vertices in G1 and V ′ is precisely the set of vertices of G whose degree is
not equal to 2.

Claim 4.20.1. There are at most 4k−2 vertices in G, whose degree is not equal
to 2.

Proof. As explained above, we assume that there are no degree two vertices in
G1. Since G is a subdivision of G1 and a subdivision only introduces degree 2
vertices, we can conclude that there are at most 4k − 2 vertices in G, whose
degree is not equal to 2.

Let Ek ⊆ E be the set of edges of G which have at least one of its incident
vertices belonging to V ′. Now, we will define G′ as the graph with vertex set
V and edge set E \ Ek.

Claim 4.20.2. The graph G′(V,E \Ek) is an interval graph and it can be com-
puted in polynomial time from G.

Proof. Since G is a subdivision of G1(V ′, F ), it is easy to see that, the graph
G′(V,E \Ek) is just a collection of vertex disjoint paths and isolated vertices.
It is straightforward to verify that G′ is an interval graph. To compute G′, we
just need to compute Ek. Since Ek is defined from V ′ and G, we only need to
compute the set V ′, which is precisely the set of vertices of G whose degree is
not equal to 2. This can be done in polynomial time.
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Since G′ is an interval graph, we have box(G′) ≤ 1 and an interval rep-
resentation of G′ can be constructed in linear time [16]. Let T be the set of
vertices of G, which are incident to at least one edge in Ek. In other words,
T = V ′

⋃
v∈V ′

NG(v). Since maximum degree of G is at most k (as explained at

the beginning of this proof), we get |T | ≤ |V ′|+k ·|V ′| ≤ (4k−2)+k ·(4k−2) =
O(k2). From the proof of Theorem 4.13 given in Section 4.5, we can notice
that the proof goes through with this definition of T and the complexity of the
algorithm depends only on |T | and not on the number of edges being modified
in G.

For clarity, we just repeat some important points of the algorithm of Sec-
tion 4.5 here, with modifications occurring mainly in the running time analysis.
Let H1(V,E1) be the graph obtained from G′ by making T a clique, without
altering other adjacencies in G′. From the box representation of G′ of dimen-
sion one, in O(n) time we can construct (by Lemma 4.3) a box representation
B1 of H1 with dimension 2.

Let H2(V,E2) be the graph obtained from G by making vertices in V \ T
adjacent to every other vertex in the graph and maintaining other adjacencies
inG unaltered. As in Section 4.5, we haveH2[T ] = G[T ]. Hence, box(H2[T ]) =
box(G[T ]) ≤ treewidth(G[T ])+2 ≤ treewidth(G)+2 ≤ 2·ML(G)+2 ≤ 2k+2
[7, 29, 48]. We know that |T | = O(k2) and therefore, using the construction in
Proposition 4.1, an optimal box representation BT ofH2[T ] can be computed in
2O(k3 log k) time and from BT , an optimal box representation of H2 of dimension
at most box(G) is computed in polynomial time.

Union of box representations of H1 and H2 gives a 2 + box(G) dimensional
box representation for G, obtained in 2O(k3 log k)nO(1) time.

Remark 4.5. The FPT approximation algorithm for boxicity described above
with ML as the parameter has the same running time and approximation ratio
as the algorithm discussed in Adiga et al. [7].

4.6 An FPT approximation algorithm for com-
puting cubicity

Fellows et al. [49, Corollary 5] proved an existential result that for every fixed
pair of integers k and b, there is an f(k) · n time algorithm which determines
whether a given graph G on n vertices and MVC(G) ≤ k has cubicity at
most b. In the theorem below, we derive a FPT approximation algorithm,
for computing the cubicity of graphs, using their vertex cover number as the
parameter. Our algorithm is constructive.

Theorem 4.21. Let G be a graph on n vertices. A cube representation of G
which is of dimension at most 2 cub(G) can be computed in time 2O(2kk2)nO(1),
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where k = MVC(G). By allowing a larger running time of 2O(g(k,ε))nO(1), we
can achieve a (1 + ε) approximation factor, for any ε > 0, where g(k, ε) =
1
ε
k32 4k

ε .
Proof. Let G(V,E) be a graph on n vertices. Without loss of generality, we
can assume that G is connected. We can compute a minimum vertex cover of
G in time 2O(k)nO(1) [74]. Let S ⊆ V be a vertex cover of G of cardinality k.
We define two supergraphs of G, namely H1(V,E1) and H2(V,E2) such that
E = E1 ∩ E2 with cub(H1) ≤ cub(G) and cub(H2) ≤ cub(G).

Let S ⊆ V be a vertex cover of G of cardinality k. First we define an
equivalence relation on the vertices of the independent set V \ S such that
vertices u and v are in the same equivalence class if and only if NG(u) =
NG(v). Let A1, A2, . . . , At be the equivalence classes. We define H1 to be the
graph obtained from G by making each Ai into a clique and maintaining other
adjacencies as it is in G. Formally, E1 = E ∪{(u, v) | u 6= v and u, v belong to
the same Ai, for some 1 ≤ i ≤ t}.

For each Ai, let us consider the mapping nAi : Ai 7→ {1, 2, · · · , |Ai|}, where
nAi(v) is the unique number representing v ∈ Ai. (Note that if u ∈ Ai and v ∈
Aj, where i 6= j, then, nAi(u) and nAj(v) could potentially be the same.) Let
s = max

1≤i≤t
|Ai|. We define one more partitioning of the independent set V \S into

equivalence classes B1, B2, . . . , Bs such that for 1 ≤ i ≤ s, Bi = {v | nAj(v) = i,

for some 1 ≤ j ≤ t}. We define H2 to be the graph obtained from G by making
each Bi into a clique, and making each vertex in S adjacent to every other
vertex in V . Formally, E2 = {(u, v) | u 6= v and u ∈ S, v ∈ V }∪{(u, v) | u 6= v

and u, v belong to the same Bi, for some 1 ≤ i ≤ s}.
If u, v are two adjacent vertices of a graph G such that NG(u) ∪ {u} =

NG(v)∪ {v}, we call them as twin vertices . G′ is called a reduced graph of G
if G′ is obtained from G by repeatedly contracting the edges among pairs of
twin vertices.
Claim 4.21.1. If G′ is a reduced graph of G, then, cub(G) = cub(G′) and from
an optimal cube representation C ′ of G′, in polynomial time, we can obtain an
optimal cube representation C of G.
Proof. Let C ′ = {I ′1, I ′2, · · · , I ′p} be an optimal cube representation of G′. For
each 1 ≤ i ≤ p, define the interval graph Ii as follows : If u ∈ V (G′), then the
interval corresponding to u in Ii is same as it is in I ′i. If u ∈ V (G) \ V (G′),
then ∃v ∈ V (G′) such that u, v are twins in G. In this case, define the interval
corresponding to u in Ii is same as the interval of its twin v in I ′i. It can
be verified that C = {I1, I2, · · · , Ip} is a valid cube representation of G.
Thus, cub(G) ≤ p. Since G′ is an induced subgraph of G, we also have
cub(G) ≥ cub(G′) = p.

Observe that in graph H1, vertices in each Ai, 1 ≤ i ≤ t are twins of
each other. We can construct a reduced graph H ′1 of H1 by contracting all



4.7. Conclusion and open problems 77

vertices in Ai to a single vertex, for each 1 ≤ i ≤ t. Now, H ′1 has only
t + |S| vertices, which is at most 2k − 1 + k. It is known that cub(H ′1) ≤
MVC(H ′1) + dlog(|V (H ′1)| −MVC(H ′1))e − 1 [27]. Since MVC(H ′1) = k, we
get cub(H ′1) ≤ 2k − 1. Using the construction in Lemma 4.1, we can compute
an optimal cube representation C ′1 of H ′1 in time 2O(2kk2). By the claim above,
from C ′1 we can get an optimal cube representation C1 of H1 in polynomial
time, with |C1| = cub(H ′1). Observe that H ′1 is an induced subgraph of G,
which implies |C1| ≤ cub(G).

Similarly, observe that, in graph H2, vertices in each Bi, 1 ≤ i ≤ s are twins
of each other. We can construct a reduced graph H ′2 of H2 by contracting all
vertices in Bi to a single vertex, for each 1 ≤ i ≤ s and contracting S to
a single vertex. Now, H ′2 is a graph on s + 1 vertices. We can also observe
that H ′2 is in fact a star graph with s leaves. In polynomial time, we can
construct an optimal cube representation C ′2 of H ′2 which is of dimension dlog se
[83]. As earlier, from C ′2 we can get an optimal cube representation C2 of H2

in polynomial time, with |C2| = cub(H ′2) = dlog se. Observe that H ′2 is an
induced subgraph of G, which implies |C2| ≤ cub(G).

It can be easily verified that E = E1 ∩ E2 and hence C1 ∪ C2 is a valid
cube representation of G of dimension |C1|+ |C2| ≤ 2 cub(G), constructible in
2O(2kk2)nO(1) time.

We can also achieve a (1+ε) approximation factor, for any ε > 0 by allowing
a larger running time as explained below. Define f(kε) = k

(
1 + 2 2k−1

ε

)
, where

k = MVC(G). If |V (G)| = n ≤ f(kε), then, by Lemma 4.1, we can get an
optimal cube representation of G in time 2O(f2(kε) log f(kε)). Otherwise, we have

2k−1
dlogdn−kk ee

≤ ε. In this case, we use the construction described above, to get a
cube representation of G of dimension |C1| + |C2|. We prove that in this case,
|C1|+ |C2| ≤ cub(G)(1 + ε).

It is known that cub(G) ≥ dlogψ(G)e, where ψ(G) is the number of
leaf nodes in the largest induced star in G [5]. By the pigeon hole princi-

ple, max
v∈S
|NG(v) ∩ (V \ S)| ≥

⌈
n− k
k

⌉
. Therefore, cub(G) ≥ dlogψ(G)e ≥⌈

log
⌈
n−k
k

⌉⌉
. Recall that |C1| ≤ 2k−1. Therefore, |C1|+ |C2| ≤ 2k−1 + cub(G)

≤ cub(G)
(

2k−1
cub(G) + 1

)
≤ cub(G)

(
2k−1

dlogdn−kk ee
+ 1

)
≤ cub(G)(1 + ε).

The total running time of this algorithm is 2O
(

1
ε
k32

4k
ε

)
nO(1).

4.7 Conclusion and open problems

Among the several parameters giving FPT approximations for boxicity, we
know the existence of exact FPT algorithms with parameter MVC(G) only.
The FPT status of the problem with other parameters is still open. Our
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FPT approximation algorithms for boxicity are dependent on the fact that
intervals can be of different lengths. Hence, we do not know of a direct way
of producing similar FPT approximation algorithms for cubicity. It will be
interesting to investigate the possibility of FPT algorithms or approximations
for cubicity, with parameters smaller than MVC(G). We have presented o(n)
factor approximation algorithms for computing the boxicity and cubicity of
graphs. Using these algorithms, we also derived a o(n) factor approximation
algorithm for computing the partial order dimension of finite posets and a
o(n) factor approximation algorithm for computing the threshold dimension
of split graphs. To our knowledge, for none of these problems polynomial
time sublinear factor approximation algorithms were known previously. Since
polynomial time approximations within an O(n1−ε) factor for any ε > 0 is
considered unlikely for any of these problems, no significant improvement in
the approximation factor can be expected.



Chapter 5

Planar grid-drawings of
outerplanar graphs

Given a connected outerplanar graph G of pathwidth p, we1

give an algorithm to add edges to G to get a supergraph of G,
which is 2-vertex-connected, outerplanar and of pathwidth O(p).
This settles an open problem raised by Biedl [14], in the context of
computing minimum height planar straight line drawings of outer-
planar graphs, with their vertices placed on a two dimensional grid.
In conjunction with the result of this chapter, the constant factor
approximation algorithm for this problem obtained by Biedl [14] for
2-vertex-connected outerplanar graphs will work for all outerplanar
graphs.

5.1 Introduction
A graph G(V,E) is outerplanar, if it has a planar embedding with all its
vertices lying on the outer face. Computing planar straight line drawings of
planar graphs, with their vertices placed on a two dimensional grid, is a well
known problem in graph drawing. Any planar graph on n vertices can be
drawn on an (n− 1)× (n− 1) sized grid [82]. The height of a grid is defined
as the smaller of the two dimensions of the grid. If G has a planar straight
line drawing, with its vertices placed on a two dimensional grid of height h,
then we call it a planar drawing of G of height h. The optimization problem
of minimizing the height of the planar drawing is well studied in literature.

Pathwidth is a structural parameter of graphs, which is widely used in
graph drawing and layout problems [14, 42, 88]. We use pw(G) to denote the
pathwidth of a graph G. The study of pathwidth, in the context of graph

1Joint work with Manu Basavaraju, L. Sunil Chandran, Deepak Rajendraprasad and
Naveen Sivadasan. This work was presented in COCOON 2013.
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drawings, was initiated by Dujmovic et al. [42]. It is known that any planar
graph that has a planar drawing of height h has pathwidth at most h [88].
However, there exist planar graphs of constant pathwidth but requiring Ω(n)
height in any planar drawing [13]. In the special case of trees, Suderman [88]
showed that any tree T has a planar drawing of height at most 3 pw(T ) − 1.
Biedl [14] considered the same problem for the bigger class of outerplanar
graphs. For any 2-vertex-connected outerplanar graph G, Biedl [14] obtained
an algorithm to compute a planar drawing of G of height at most 4 pw(G) −
3. Since it is known that pathwidth is a lower bound for the height of the
drawing [88], the algorithm given by Biedl [14] is a 4-factor approximation
algorithm for the problem, for any 2-vertex-connected outerplanar graph. The
method in Biedl [14] is to add edges to the 2-vertex-connected outerplanar
graph G to make it a maximal outerplanar graph H and then draw H on a
grid of height 4 pw(G) − 3. The same method would give a constant factor
approximation algorithm for arbitrary outerplanar graphs, if it is possible to
add edges to an arbitrary connected outerplanar graph G to obtain a 2-vertex-
connected outerplanar graph G′ such that pw(G′) = O(pw(G)). This was an
open problem in Biedl [14].

In this chapter, we settle this problem by giving an algorithm to augment
a connected outerplanar graph G of pathwidth p by adding edges so that the
resultant graph is a 2-vertex-connected outerplanar graph of pathwidth O(p).
Notice that, the non-triviality lies in the fact that G′ has to be maintained
outerplanar. (If we relax this condition, the problem becomes very easy. It is
easy to verify that the supergraph G′ of G, obtained by making two arbitrarily
chosen vertices of G adjacent to each other and to every other vertex in the
graph, is 2-vertex-connected and has pathwidth at most pw(G) + 2.) Similar
problems of augmenting outerplanar graphs to make them 2-vertex-connected,
while maintaining the outerplanarity and optimizing some other properties,
like number of edges added [53, 61], have also been investigated previously.

5.2 Background
A tree decomposition of a graph G(V,E) [79] is a pair (T,X ), where T is a
tree and X = (Xt : t ∈ V (T )) is a family of subsets of V (G), such that:

1. ⋃(Xt : t ∈ V (T )) = V (G).

2. For every edge e of G there exists t ∈ V (T ) such that e has both its end
points in Xt.

3. For every vertex v ∈ V , the induced subgraph of T on the vertex set
{t ∈ V (T ) : v ∈ Xt} is connected.
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The width of the tree decomposition is maxt∈V (T ) (|Xt| − 1). Each Xt ∈X is
referred to as a bag in the tree decomposition. A graph G has treewidth w if
w is the minimum integer such that G has a tree decomposition of width w.

A path decomposition (P,X ) of a graph G is a tree decomposition of G
with the additional property that the tree P is a path. The width of the path
decomposition is maxt∈V (P ) (|Xt| − 1). A graph G has pathwidth w if w is the
minimum integer such that G has a path decomposition of width w.

Without loss of generality we can assume that, in any path decomposition
(P ,X ) of G, the vertices of the path P are labeled as 1, 2, . . ., in the order
in which they appear in P . Accordingly, the bags in X also get indexed
as 1, 2, . . .. For each vertex v ∈ V (G), define FirstIndexX (v) = min{i |
Xi ∈ X contains v}, LastIndexX (v) = max{i | Xi ∈ X contains v} and
RangeX (v) = [FirstIndexX (v), LastIndexX (v)]. By the definition of a path
decomposition, if t ∈ RangeX (v), then v ∈ Xt. If v1 and v2 are two distinct
vertices, define GapX (v1, v2) as follows:

• If RangeX (v1) ∩RangeX (v2) 6= ∅, then GapX (v1, v2) = ∅.

• If LastIndexX (v1) < FirstIndexX (v2), then
GapX (v1, v2) = [LastIndexX (v1) + 1, F irstIndexX (v2)].

• If LastIndexX (v2) < FirstIndexX (v1), then
GapX (v1, v2) = [LastIndexX (v2) + 1, F irstIndexX (v1)].

The motivation for this definition is the following. Suppose (P ,X ) is a path
decomposition of a graph G and v1 and v2 are two non-adjacent vertices of G. If
we add a new edge between v1 and v2, a natural way to modify the path decom-
position to reflect this edge addition is the following. IfGapX (v1, v2) = ∅, there
is already an Xt ∈ X , which contains v1 and v2 together and hence, we need
not modify the path decomposition. If LastIndexX (v1) < FirstIndexX (v2),
we insert v1 into all Xt ∈X , such that t ∈ GapX (v1, v2). On the other hand,
if LastIndexX (v2) < FirstIndexX (v1), we insert v2 to all Xt ∈X , such that
t ∈ GapX (v1, v2). It is clear from the definition of GapX (v1, v2) that this
procedure gives a path decomposition of the new graph. Whenever we add an
edge (v1, v2), we stick to this procedure to update the path decomposition.

A block of a connected graph G is a maximal connected subgraph of G
without a cut vertex. Every block of a connected graph G is thus either a
single edge which is a bridge in G, or a maximal 2-vertex-connected subgraph
of G. If a block of G is not a single edge, we call it a non-trivial block of G.

Given a connected outerplanar graphG, we define a rooted tree T (hereafter
referred to as the rooted block tree of G) as follows: The blocks of G and the
cut-vertices of G form the vertex set of T . A vertex of T corresponding to a
cut-vertex x of G is made adjacent to a vertex of T corresponding to a block
B of G if and only if x is a vertex belonging to block B in G. The root of T
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is defined to be an arbitrary block of G which contains at least one non-cut
vertex (it is easy to see that such a block always exists). It is easy to see that
T , as defined above, is a tree [40]. In our discussions, we restrict ourselves
to a fixed rooted block tree of G and all the definitions hereafter will be with
respect to this chosen tree. For any two distinct blocks Bi and Bj of G sharing
a cut vertex x in G, if the vertex in the rooted block tree T of G corresponding
to Bj is on the path between the root of T and the vertex in T corresponding
to Bi, we say that Bi is a child block of Bj at x.

It is known that every 2-vertex-connected outerplanar graph has a unique
Hamiltonian cycle [90]. Though the Hamiltonian cycle of a 2-vertex-connected
block of G can be traversed either clockwise or anticlockwise, let us fix one of
these orderings, so that the successor and predecessor of each vertex in the
Hamiltonian cycle in a block is fixed. We call this order the clockwise order.
Consider a non-root block Bi of G such that Bi is a child block of its parent,
at the cut vertex x. If Bi is a non-trivial block and yi and y′i respectively are
the predecessor and successor of x in the Hamiltonian cycle of Bi, then we call
yi the last vertex of Bi and y′i the first vertex of Bi. If Bi is a trivial block, the
sole neighbor of x in Bi is regarded as both the first vertex and the last vertex
of Bi. By the term path, we always mean a simple path, i.e., a path in which
no vertex repeats.

5.3 An overview of our method
Given a connected outerplanar graph G(V,E) of pathwidth p, our algorithm
will produce a 2-vertex-connected outerplanar graph G′′(V,E ′′) of pathwidth
O(p), where E ⊆ E ′′. Our algorithm proceeds in three stages.

(1) We use a modified version of the algorithm proposed by Govindan et
al. [56] to obtain a nice tree decomposition (defined in Section 5.4) of G. Using
this nice tree decomposition of G, we construct a special path decomposition
of G of width at most 4p+ 3.

(2) For each cut vertex x of G, we define an ordering among the child blocks
attached through x to their parent block. To define this ordering, we use the
special path decomposition constructed in the first stage. This ordering helps
us in constructing an outerplanar supergraph G′(V,E ′) of G, whose pathwidth
is at most 8p+ 7, such that for every cut vertex x in G′, G′ \x has exactly two
components. The properties of the special path decomposition of G obtained
in the first stage is crucially used in our argument to bound the width of the
path decomposition of G′, produced in the second stage.

(3) We 2-vertex-connect G′ to construct G′′(V,E ′′), using a straightforward
algorithm. As a by-product, this algorithm also gives us a surjective mapping
from the cut vertices of G′ to the edges in E ′′\E ′. We give a counting argument
based on this mapping and some basic properties of path decompositions to
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show that the width of the path decomposition of G′′ produced in the third
stage is at most 16p+ 15.

5.4 Stage 1: Construct a nice path decompo-
sition of G

In this section, we construct a nice tree decomposition of the connected outer-
planar graph G and then use it to construct a nice path decomposition of G.
We begin by giving the definition of a nice tree decomposition.

Given an outerplanar graph G, Govindan et al. [56, Section 2] gave a linear
time algorithm to construct a width 2 tree decomposition (T,Y ) of G where
Y = (Yt : t ∈ V (T )), with the following special properties:

1. There is a bijective mapping b from V (G) to V (T ) such that, for each
v ∈ V (G), v is present in the bag Yb(v).

2. If Bi is a child block of Bj at a cut vertex x, the vertex set
{b(v) | v ∈ V (Bi \ x)} induces a subtree T ′ of T such that, if (b(u), b(v))
is an edge in T ′, then (u, v) ∈ E(G) - this means that the subgraph Bi\x
of G has a spanning tree, which is a copy of T ′ on the corresponding
vertices. Moreover, (T ′,Y ′), with Y ′ = (Yt : t ∈ V (T ′)) gives a tree
decomposition of Bi.

3. G has a spanning tree, which is a copy of T on the corresponding vertices;
i.e. if (b(u), b(v)) is an edge in T , then (u, v) ∈ E(G).

Definition 5.1 (Nice tree decomposition of an outerplanar graph G). A tree
decomposition (T,Y ) of G, where Y = (Yt : t ∈ V (T )) having properties 1, 2
and 3 above, together with the following additional property, is called a nice
tree decomposition of G.

4. If yi and y′i are respectively the last and first vertices of a non-root,
non-trivial block Bi, then the bag Yb(yi) ∈ Y contains both yi and y′i.

In the discussion that follows, we will show that any outerplanar graph G has a
nice tree decomposition (T,Y ) of width at most 3. Initialize (T,Y ) to be the
tree decomposition of G, constructed using the method proposed by Govindan
et al. [56], satisfying properties 1, 2 and 3 of nice tree decompositions. We
need to modify (T,Y ) in such a way that, it satisfies property 4 as well.

For every non-root, non-trivial block Bi of G, do the following. If yi
and y′i are respectively the last and first vertices of Bi, then, for each t ∈
{b(v) | v ∈ V (Bi \ x)}, we insert y′i to Yt, if it is not already present in Yt and
we call y′i as a propagated vertex. Note that, after this modification Yb(yi)

contains both yi and y′i.
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Claim 5.0.2. After the modification, (T,Y ) remains a tree decomposition of
G.

Proof. Clearly, we only need to verify that the third property in the definition
of a tree decomposition holds, for all the propagated vertices. Let y′i be a
propagated vertex, which got inserted to the bags corresponding to vertices of
Bi \x, during the modification. Let Vy′i = {t | y′i ∈ Yt, before the modification}
and let V ′y′i = {t | y′i ∈ Yt, after the modification}. Then, clearly, V ′y′i =
Vy′i ∪ {b(v) | v ∈ V (Bi \ x)}.

Clearly, the induced subgraph of T on the vertex set Vy′i is connected,
since we had a tree decomposition of G before the modification. By prop-
erty 2 of nice decompositions, the induced subgraph of T on the vertex set
{b(v) | v ∈ V (Bi \ x)} is also connected. Moreover, by property 1 of nice de-
compositions, b(y′i) ∈ Vy′i and hence, b(y′i) ∈ {b(v) | v ∈ V (Bi \ x)} ∩ Vy′i . This
implies that the induced subgraph of T on the vertex set V ′y′i is connected.

Claim 5.0.3. After the modification, (T,Y ) becomes a nice tree decomposition
of G of width at most 3.

Proof. It is easy to verify that all the four properties required by nice decom-
positions are satisfied, after the modification. Moreover, for any block Bi,
attached to its parent at the cut vertex x, at most one (propagated) vertex is
getting newly inserted into the bags corresponding to vertices of Bi \ x. Since
the size of any bag in Y was at most three initially and it got increased by
at most one, in the new decomposition the size of any bag is at most four.
Therefore, the new decomposition has width at most three.

From the claims above, we can conclude the following.

Lemma 5.1. Every outerplanar graph G has a nice tree decomposition (T,Y )
of width 3, constructible in polynomial time.

Definition 5.2 (Nice path decomposition of an outerplanar graph). Let (P ,X )
be a path decomposition of an outerplanar graph G. If, for every non-root
non-trivial block Bi, there is a bag Xt ∈X containing both the first and last
vertices of Bi together, then (P ,X ) is called a nice path decomposition of G.

Lemma 5.2. Let G be an outerplanar graph with pw(G) = p. A nice path
decomposition (P ,X ) of G, of width at most 4p + 3, is constructible in poly-
nomial time.

Proof. Let (T,Y ), with Y = (Yv
T

: v
T
∈ V (T )) be a nice tree decomposi-

tion of G of width 3, obtained using Lemma 5.1. Obtain an optimal path
decomposition (PT ,XT ) of the tree T in polynomial time, using a standard
algorithm (For example, the algorithm from [85]). Since T is a spanning tree
of G, the pathwidth of T is at most that of G. Therefore, the width of the
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path decomposition (PT ,XT ) is at most p; i.e. there are at most p+ 1 vertices
of T in each bag XTi ∈XT .

Let P = PT and for each XTi ∈ XT , we define Xi = ⋃
v
T
∈XTi

Yv
T
. It

is not difficult to show that (P ,X ), with X = (X1, . . . , X|V (PT )|), is a path
decomposition of G (See [56]). The width of this path decomposition is at most
4(p+ 1)− 1 = 4p+ 3, since |Yv

T
| ≤ 4, for each bag Yv

T
∈ Y and |XTi | ≤ p+ 1,

for each bag XTi ∈XT .
Let Bi be a non-root, non-trivial block in G and yi and y′i respectively be

the first and last vertices of Bi. Since b(yi) is a vertex of the tree T , there
is some bag XTj ∈ XT , containing b(yi). The bag Yb(yi) ∈ Y contains both
yi and y′i, since (T,Y ) is a nice tree decomposition of G. It follows from the
definition of Xj that Xj ∈X contains both yi and y′i. Therefore, (P ,X ) is a
nice path decomposition of G.

5.5 Edge addition without spoiling the outer-
planarity

In this section, we prove some technical lemmas which will be later used to
prove that the intermediate graph G′ obtained in Stage 2 and the 2-vertex-
connected graph G′′ obtained in Stage 3 are outerplanar.

The following is a simple observation about 2-vertex-connected outerplanar
graphs.

Observation 5.1. Let H be a 2-vertex-connected outerplanar graph. Then,
the number of internally vertex disjoint paths in H between any two consecutive
vertices in the Hamiltonian cycle of H is exactly two.

Proof. Since H is a 2-vertex-connected outerplanar graph, it can be embedded
in the plane, so that its exterior cycle C is the unique Hamiltonian cycle of
H [30]. Consider such an embedding of H and let C = (v1, v2, . . . , vn, v1),
where the vertices of the cycle C are given in the clockwise order of the cycle.
Consider any pair of of consecutive vertices in C. Without loss of generality, let
(v1, v2) be this pair. The paths P1 = (v1, v2) and P2 = (v1, vn, vn−1, . . . , v3, v2)
are obviously two internally vertex disjoint paths in H, between v1 and v2.

Since the path P1 = (v1, v2) is internally vertex disjoint from any other
path in H between v1 and v2, it is enough to show that, there cannot be two
internally vertex disjoint paths Pi and Pj between v1 and v2 without using
the edge (v1, v2). For contradiction, assume that Pi and Pj are two internally
vertex disjoint paths between v1 and v2 without using the edge (v1, v2). Let
(v1, vi) be the first edge of Pi and (v1, vj) be the first edge of Pj. Without loss
of generality, assume that i < j. This implies that the edge (v1, vi) is not an
edge of the exterior cycle C and hence, the (curve corresponding to the) edge
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(v1, vi) splits the region bounded by C into two parts. Let the closed region
bounded by the path vi, vi+1, . . . , vn, v1 and the edge (v1, vi) be denoted by
Cl and the closed region bounded by by the path vi, vi−1, . . . , v1 and the edge
(v1, vi) be denoted by Cr.

Let the subpath of Pj from vj to v2 be denoted by P ′j . Since vj is in Cl \Cr
and v2 is in Cr \Cl, the path P ′j has to cross from Cl to Cr at least once. Since
Pj is vertex disjoint from Pi, the path P ′j cannot cross from Cl to Cr at vi.
Since the path Pj is simple, P ′j cannot cross from Cl to Cr at v1 also. This
implies that there is an edge (u, v) in P ′j with u belonging to Cl \ Cr and v

belonging to Cr \ Cl. This would mean that the curve corresponding to the
edge (u, v) will cross the curve corresponding to the edge (v1, vi), which is a
contradiction, because by our assumption, our embedding is an outerplanar
embedding. Therefore, there cannot be two internally vertex disjoint paths Pi
and Pj between v1 and v2 without using the edge (v1, v2).

Thus, the number of internally vertex disjoint paths in H between any two
consecutive vertices in the Hamiltonian cycle of H is exactly two.

The following lemma describes some conditions to ensure that the outer-
planarity of a graph is not spoiled on the addition of a new edge. To get
an intuitive understanding of this lemma, the reader may refer to Figure 5.1.
Recall that, when we use the term path, it always refers to a simple path.
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Figure 5.1: (a) The path between u and v and the path between u′ and v′

(shown in thick edges) satisfy the conditions stated in Lemma 5.3. According to
Lemma 5.3, on adding any one of the dotted edges (u, v) or (u′, v′), the resultant
graph is outerplanar. (b) An outerplanar drawing of the resultant graph, after
adding the edge (u, v). In this graph, u, v, a, b, c, d, e, f, g, h, i, j, k, l, u is the
Hamiltonian cycle of the new block formed.
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Lemma 5.3. Let G(V,E) be a connected outerplanar graph. Let u and v be two
distinct non-adjacent vertices in G and let P = (u = x0, x1, x2, . . . , xk, xk+1 =
v) where k ≥ 1 be a path in G such that:

(i) P shares at most one edge with any block of G.

(ii) For 0 ≤ i ≤ k, if the block containing the edge (xi, xi+1) is non-trivial,
then xi+1 is the successor of xi in the Hamiltonian cycle of that block.

Then the graph G′(V,E ′), where E ′ = E ∪ {(u, v)}, is outerplanar.

Proof. It is well known that a graph G is outerplanar if and only if it contains
no subgraph that is a subdivision ofK4 orK2,3 [30]. Consider a path P between
u and v as stated in the lemma.

Property 5.1. In every path in G from u to v, vertices x1, . . . , xk should appear
and for 0 ≤ i ≤ k, xi should appear before xi+1 in any such path.

Proof. For any 1 ≤ i ≤ k, the two consecutive edges ei = (xi−1, xi) and ei+1 =
(xi, xi+1) of the path P belong to two different blocks of G, by assumption.
Therefore, each internal vertex xi, 1 ≤ i ≤ k, is a cut vertex in G. As a result,
in every path in G between u and v, vertices x1, . . . , xk should appear and for
0 ≤ i ≤ k, xi should appear before xi+1 in any such path.

Property 5.2. For any 0 ≤ i ≤ k, there are at most two internally vertex
disjoint paths in G between xi and xi+1.

Proof. Any path from xi to xi+1 lies fully inside the block Bi that contains the
edge (xi, xi+1). If Bi is trivial, the only path from xi to xi+1 is the direct edge
between them.

If this is not the case, Bi is 2-vertex-connected. Since this means that
Bi is non-trivial, by the assumption of Lemma 5.3 xi+1 is the successor of xi
in the Hamiltonian cycle of Bi. Therefore, by Observation 5.1 the property
follows.

We will show that if G′ is not outerplanar, then G also was not outerpla-
nar, which is a contradiction. Assume that G′ is not outerplanar. This implies
that there is a subgraph H ′ of G′ that is a subdivision of K4 or K2,3. Since
G does not have a subgraph that is a subdivision of K4 or K2,3, H ′ cannot be
a subgraph of G. Hence, the new edge (u, v) should be an edge in H ′ and all
other edges of H ′ are edges of G.

Case 1. H ′ is a subdivision of K4.
Let k1, k2, k3 and k4 denote the four vertices of H ′ that correspond to the

vertices of K4. We call them as branch vertices of H ′. For i, j ∈ {1, 2, 3, 4},
i 6= j, let Pi,j denote the path in H ′ from the branch vertex ki to the branch
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vertex kj, such that each intermediate vertex of the path is a degree two vertex
in H ′. Without loss of generality, assume that the edge (u, v) is part of the
path P1,2 of H ′.

Claim 5.3.1. All of the vertices x1, . . . , xk appear in P1,2. The order < in which
the vertices u, v, x1, . . . , xk appear in P1,2 should be one of the following three:
(without loss of generality, assuming u < v): (1) u < v < xk < xk−1 < · · · < x1

(2) xk < xk−1 < · · · < x1 < u < v (3) xj < xj−1 < · · · < x1 < u < v <

xk · · · < xj+1 for some j ∈ {1, 2, . . . , k − 1}.

Proof. Suppose xi, 1 ≤ i ≤ k, does not belong to the path P1,2. Then, there is
a path in H ′ \ (u, v) between vertices u and v, avoiding the vertex xi, since H ′
is a subdivision of K4. Since H ′ \ (u, v) is a subgraph of G, this implies that
there is a path in G, between u and v that avoids xi. This is a contradiction
to Property 5.1. Therefore, xi ∈ P1,2. Notice that there is a path in H ′ \ (u, v),
and hence in G, between u and v that goes through the vertex k3. To satisfy
Property 5.1, xi should appear before xi+1, for 0 ≤ i ≤ k, in this path. Hence,
one of the orderings mentioned in the claim should happen in P1,2.

Let us denote the first vertex in the ordering < by z1 and the last vertex
in the ordering < by z2. (In the first case, z1 = u and z2 = x1. In the second
case, z1 = xk and z2 = v. In the third case, z1 = xj and z2 = xj+1.) In all
the three cases of the ordering, there is a direct edge in G, between z1 and z2.
Notice that in any of these three possible orderings, we do not have z1 = u

and z2 = v simultaneously. Since (z1, z2) 6= (u, v), by deleting the intermediate
vertices between z1 and z2 from the path P1,2 and including the direct edge
between z1 and z2, we get a path P ′1,2 between k1 and k2 in G. All vertices in
P ′1,2 are from the vertex set of P1,2. Therefore, by replacing the path P1,2 in
H ′ by P ′1,2, we get a subgraph H of G that is a subdivision of K4. This means
that G is not outerplanar, which is a contradiction. Therefore, H ′ cannot be
a subdivision of K4.

Case 2. H ′ is a subdivision of K2,3.
As earlier, let k1, k2, k3, k4 and k5 denote the branch vertices of H ′ that

correspond to the vertices of K2,3. Let k1, k3, k5 be the degree 2 branch vertices
in H ′ and k2, k4 be the degree 3 branch vertices of H ′. For i ∈ {1, 3, 5} and
j ∈ {2, 4}, let Pi,j denote the path in H ′ from vertex ki to vertex kj, such that
each intermediate vertex of the path is a degree two vertex in H ′. Also, for
i ∈ {1, 3, 5} and j ∈ {2, 4} let Pj,i denote the path from j to i in which the
vertices in Pj,i appear in the reverse order compared to Pi,j. Without loss of
generality, assume that the edge (u, v) is part of the path P1,2 of H ′. Let P4,1,2

denote the path in H ′ between vertices k4 and k2, obtained by concatenating
the paths P4,1 and P1,2.
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Claim 5.3.2. All of the vertices x1, . . . , xk appear in P4,1,2. The order < in
which the vertices u, v, x1, . . . , xk appear in P4,1,2 should be one of the following
three (without loss of generality, assuming u < v): (1) u < v < xk < xk−1 <

· · · < x1 (2) xk < xk−1 < · · · < x1 < u < v (3) xj < xj−1 < · · · < x1 < u <

v < xk · · · < xj+1 for some j ∈ {1, 2, . . . , k − 1}.

This can be proved in a similar way as in Case 1. The remaining part of
the proof is also similar. Let us denote the first vertex in the ordering < by
z1 and the last vertex in the ordering < by z2. Repeating similar arguments
as in Case 1, we can prove that by deleting the intermediate vertices between
z1 and z2 from the path P4,1,2 and including the direct edge between z1 and
z2, we get a path P ′4,1,2 between k4 and k2 in G. All vertices in P ′4,1,2 are from
the vertex set of P4,1,2. Therefore, by replacing the path P4,1,2 in H ′ by P ′4,1,2,
we get a subgraph H of G. If P ′4,1,2 has at least one intermediate vertex, the
subgraph H of G, obtained by replacing the path P4,1,2 in H ′ by P ′4,1,2, is a
subdivision of K2,3, where an intermediate vertex of P ′4,1,2 takes the role of the
branch vertex k1. This contradicts the assumption that G is outerplanar.

Therefore, assume that P ′4,1,2 has no intermediate vertices, i. e., z1 = k4

and z2 = k2. In the first case of ordering < mentioned in the claim above, we
have k4 = z1 = u = x0 and k2 = z2 = x1. In the second case, k4 = z1 = xk and
k2 = z2 = v = xk+1. In the third case, k4 = z1 = xj and k2 = z2 = xj+1. In
each of these cases, by Property 5.2, there can be at most two vertex disjoint
paths in G between z1 and z2. But, in all these cases, there is a direct edge
between k4 = z1 and k2 = z2 in G. Since H ′ is a subdivision of K2,3, other than
this direct edge, in H ′\(u, v) there are two other paths from k4 = z1 to k2 = z2

that are internally vertex disjoint and containing at least one intermediate
vertex. This will mean that there are at least three internally vertex disjoint
paths from z1 = k4 to z2 = k2 in G, which is a contradiction. Therefore, H ′
cannot be a subdivision of K2,3.

Since, G′ does not contain a subgraph H ′ that is a subdivision of K4 or
K2,3, G′ is outerplanar.

The following lemma explains the effect of the addition of an edge (u, v)
as mentioned in Lemma 5.3, to the block structure and the Hamiltonian cycle
of each block. Assume that for 0 ≤ i ≤ k, the edge (xi, xi+1) belongs to the
block Bi.

Lemma 5.4.

1. Other than the blocks B0 to Bk of G merging together to form a new
block B′ of G′, blocks in G and G′ are the same.

2. Vertices in blocks B0 to Bk, except xi, 0 ≤ i ≤ k + 1, retains their
successor and predecessor in the Hamiltonian cycle of B′ same as it was
in its respective block’s Hamiltonian cycle in G.
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3. Each xi, 0 ≤ i ≤ k, retains its Hamiltonian cycle predecessor in B′ same
as it was in the block Bi of G and each xi, 1 ≤ i ≤ k + 1, retains its
Hamiltonian cycle successor in B′ same as in the block Bi−1 of G.

Proof. When the edge (u, v) is added, it creates a cycle containing the vertices
u = x0, x1, . . . , xk+1 = v. Hence, the blocks B0 to Bk of G merge together to
form a single block B′ in G′. It is obvious that other blocks are unaffected by
this edge addition.

For simplicity, if Bi is a trivial block containing the edge (xi, xi+1), we
say that xi and xi+1 are neighbors of each other in the Hamiltonian cycle of
Bi. For each Bi, 0 ≤ i ≤ k, let xi, xi+1, zi1, zi2, . . . , ziti , xi be the Hamiltonian
cycle of Bi in G. For 0 ≤ i ≤ k, let us denote the path xi+1, zi1, zi2, . . . , ziti
by Pi. Then, the Hamiltonian cycle of B′ is u = x0 ◦ Pk ◦ Pk−1 ◦ . . . P0 ◦
u, where ◦ denotes the concatenation of the paths. (For example, in Fig-
ure 5.1, u, v, a, b, c, d, e, f, g, h, i, j, k, l, u is the Hamiltonian cycle of the new
block formed, when the edge (u, v) is added.) From this, we can conclude that
the second and third parts of the lemma holds.

5.6 Stage 2: Construction of G′ and its path
decomposition

The organization of this sections is as follows: For each cut vertex x of G, we
define an ordering among the child blocks attached through x to their parent
block, based on the nice path decomposition (P ,X ) of G obtained using
Lemma 5.2. This ordering is then used in defining a supergraph G′(V,E ′) of G
such that for every cut vertex x in G′, G′\x has exactly two components. Using
repeated applications of Lemma 5.3, we then show that G′ is outerplanar. We
extend the path decomposition (P ,X ) of G to a path decomposition (P ′,X ′)
of G′, as described in Section 5.2. By a counting argument using the properties
of the nice path decomposition (P ,X ), we show that the width of the path
decomposition (P ′,X ′) is at most 2p′ + 1, where p′ is the width of (P ,X ).

5.6.1 Defining an ordering of child blocks
If (P ,X ) is a nice path decomposition of G, then, for each non-root block
B of G, at least one bag in X contains both the first and last vertices of B
together.

Definition 5.3 (Sequence number of a non-root block). Let (P ,X ) be the nice
path decomposition of G obtained using Lemma 5.2. For each non-root block
B of G, we define the sequence number of B as min{i | Xi ∈X simultaneously
contains both the first and last vertices of B}.
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For each cut vertex x, there is a unique block Bx such that Bx and its
child blocks are intersecting at x. For each cut vertex x, we define an ordering
among the child blocks attached at x, as follows. If B1, . . . , Bk are the child
blocks attached at x, we order them in the increasing order of their sequence
numbers in (P ,X ). If Bi and Bj are two child blocks with the same sequence
number, their relative ordering is arbitrary.

From the ordering defined, we can make some observations about the ap-
pearance of the first and last vertices of a block Bi in the path decomposition.
These observations are crucially used for bounding the width of the path de-
composition (P ′,X ′) of G′. Let B1, . . . , Bk be the child blocks attached at
a cut vertex x, occurring in that order according to the ordering we defined
above. For 1 ≤ i ≤ k, let yi and y′i respectively be the last and first vertices of
Bi.

Property 5.3. For any 1 ≤ i ≤ k−1, if GapX (y′i, yi+1) 6= ∅, then GapX (y′i, yi+1)
= [LastIndexX (y′i) + 1, F irstIndexX (yi+1)] and for all t ∈ GapX (y′i, yi+1),
x ∈ Xt.

Proof. If GapX (y′i, yi+1) 6= ∅, either LastIndexX (y′i) < FirstIndexX (yi+1)
or LastIndexX (yi+1) < FirstIndexX (y′i). The latter case will imply that,
sequence number of Bi+1 < sequence number of Bi, which is a contradiction.
Therefore, LastIndexX (y′i) < FirstIndexX (yi+1) and hence GapX (y′i, yi+1) =
[LastIndexX (y′i) + 1, F irstIndexX (yi+1)].

Since x is adjacent to y′i and yi+1, we get FirstIndexX (x)≤ LastIndexX (y′i)
and LastIndexX (x) ≥ FirstIndexX (yi+1). We can conclude that RangeX (x)
⊇ [LastIndexX (y′i), F irstIndexX (yi+1)] and the property follows.

Property 5.4. For any 1 ≤ i < j ≤ k−1, GapX (y′i, yi+1)∩GapX (y′j, yj+1) = ∅.

Proof. We can assume that GapX (y′i, yi+1) 6= ∅ and GapX (y′j, yj+1) 6= ∅, since
the property holds trivially otherwise. By Property 5.3, we get, GapX (y′i, yi+1)
= [LastIndexX (y′i) + 1, F irstIndexX (yi+1)] and GapX (y′j, yj+1) =
[LastIndexX (y′j) + 1, F irstIndexX (yj+1)]. Since i + 1 ≤ j, by the property
of the ordering of blocks, we know that sequence number of Bi+1 ≤ sequence
number of Bj. From the definitions, we have, FirstIndexX (yi+1) ≤ sequence
number of Bi+1 ≤sequence number of Bj ≤ LastIndexX (y′j) and the property
follows.

5.6.2 Algorithm for constructing G′ and its path decom-
position

We use Algorithm 3 to construct G′(V,E ′) and a path decomposition (P ′,X ′)
of G′. The processing of each cut vertex is done in lines 2 to 7 of Algo-
rithm 3. While processing a cut vertex x, the algorithm adds the edges
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(y′1, y2), (y′2, y3), . . . , (y′kx−1, ykx) (as defined in the algorithm) and modifies the
path decomposition, to reflect each edge addition.

Algorithm 3: Computing the intermediate supergraph G′ and its path
decomposition
Input: A connected outerplanar graph G(V , E) and a nice path

decomposition (P ,X ) of G, the rooted block tree of G, the
Hamiltonian cycle of each non-trivial block of G and the first
and last vertices of each non-root block of G

Output: An outerplanar supergraph G′(V , E ′) of G such that, for
every cut vertex x of G′, G′ \ x has exactly two connected
components, a path decomposition (P ′,X ′) of G′

1 E ′ = E, (P ′,X ′) = (P ,X )
2 for each cut vertex x ∈ V (G) do
3 Let B1, . . . , Bkx , in that order, be the child blocks attached at x,

according to the ordering defined in Section 5.6.1
4 for i = 1 to kx − 1 do
5 Let y′i be the first vertex of Bi and yi+1 be the last vertex of Bi+1

6 E ′ = E ′ ∪ {(y′i, yi+1)}
7 if GapX (y′i, yi+1) 6= ∅ then for t ∈ GapX (y′i, yi+1) do

X ′t = X ′t ∪ {y′i}

Lemma 5.5. G′ is outerplanar and for each cut vertex x of G′, G′ \ x has
exactly two components.

Proof. We know that G is outerplanar to begin with. At a certain stage, let
x be the cut vertex taken up by the algorithm for processing (in Line 2).
Assume that the graph at this stage, denoted by G0, is outerplanar and each
cut vertex x′ whose processing is completed, satisfies the condition that all the
child blocks attached at x′ have merged together to form a single child block
attached at x′.

It is clear that the child blocks attached at a vertex x remain unchanged
until x is picked up by the algorithm for processing. Let B1, . . . , Bkx , in that
order, be the child blocks attached at x, according to the ordering defined in
Section 5.6.1. Let Bx be the parent block of B1, . . . , Bkx , in the current graph
G0. For each 1 ≤ i ≤ kx, let y′i and yi respectively be the first and last vertices
of Bi. For 1 ≤ i ≤ kx − 1, let Gi be the graph obtained, when the algorithm
has added the edges up to (y′i, yi+1).

We will prove that the algorithm maintains the following invariants, while
processing the cut vertex x, for each 0 ≤ i ≤ kx − 1:

The graph Gi is outerplanar. In Gi, the blocks B1, . . . , Bi+1 of Gi−1

have merged together and formed a child block B′ of Bx. The vertex
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y′i+1 is the first vertex of B′. If i ≤ kx − 2, blocks Bi+2, . . . , Bkx

remain the same in Gi, as in G.

By our assumption, the invariants hold for G0. We need to show that if the
invariants hold for Gi−1, they hold for Gi as well. Assume that the invariants
hold for Gi−1 and let B′ be the child block of Bx in Gi−1 that is formed by
merging together the blocks B1, . . . , Bi of Gi−2, as stated in the invariant.
Since the invariants hold for Gi−1 by our assumption, y′i is the first vertex of
B′ and yi+1 is the last vertex in Bi+1. In other words, y′i is the successor of x
in B′ and yi+1 is the predecessor of x in Bi+1 and the edges (yi+1, x) and (x, y′i)
of the path Pi = (yi+1, x, y

′
i) belong to two different blocks of Gi−1. Hence, by

Lemma 5.3, after adding the edge (y′i, yi+1), the resultant intermediate graph
Gi is outerplanar. By Lemma 5.4, the blocks B′ and Bi+1 merges together to
form a child block B′′ of Bx in Gi. Further, the vertex y′i+1 will be the successor
of x in the Hamiltonian cycle of B′′ i.e, the first of the block B′′. Remaining
blocks of Gi are the same as in Gi−1. Thus, all the invariants hold for Gi. It
follows that the graph Gkx−1 is outerplanar and the blocks B1, . . . , Bkx have
merged together in Gkx−1 to form a single child block of Bx at x.

When this processing is repeated at all cut vertices, it is clear that G′ is
outerplanar and for each cut vertex x of G′, G′\x has exactly two components.

Lemma 5.6. (P ′,X ′) is a path decomposition of G′ of width at most 8p+ 7.

Proof. Algorithm 3 initialized (P ′,X ′) to (P ,X ) and modified it in Line 7,
following each edge addition. By Property 5.3, we have GapX (y′i, yi+1) =
[LastIndexX (y′i)+1, F irstIndexX (yi+1)]. Hence, by the modification done in
Line 7 while adding a new edge (y′i, yi+1), (P ′,X ′) becomes a path decomposi-
tion of the graph containing the edge (y′i, yi+1), as explained in Section 5.2. It
follows that, when the algorithm terminates (P ′,X ′) is a path decomposition
of G′.

Consider any X ′t ∈ X ′. While processing the cut vertex x, if Algorithm 3
inserts a new vertex y′i to X ′t, to reflect the addition of a new edge (y′i, yi+1)
then, t ∈ GapX (y′i, yi+1). Suppose (y′i, yi+1) and (y′j, yj+1) are two new edges
added while processing the cut vertex x, where, 1 ≤ i < j ≤ kx − 1. By
Property 5.4, we know that if t ∈ GapX (y′i, yi+1), then, t /∈ GapX (y′j, yj+1).
Therefore, when the algorithm processes a cut vertex x in lines 2 to 7, at most
one vertex is newly inserted to the bag X ′t. Moreover, if t ∈ GapX (y′i, yi+1)
then, the cut vertex x ∈ Xt, by Property 5.3.

That means, a vertex not present in the bag Xt can be added to X ′t only
when a cut vertex x that is already present in the bag Xt is being processed.
Moreover, when a cut vertex x that is present in Xt is processed, at most one
new vertex can be added to X ′t. It follows that |X ′t| ≤ |Xt|+number of cut
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vertices present in Xt ≤ 2|Xt| ≤ 2(4p + 4). Therefore, the width of the path
decomposition (P ′,X ′) is at most 8p+ 7.

5.7 Construction of G′′ and its path decompo-
sition

In this section, we give an algorithm to add some more edges to G′(V,E ′)
so that the resultant graph G′′(V,E ′′) is 2-vertex-connected. The algorithm
also extend the path decomposition (P ′,X ′) of G′ to a path decomposition
(P ′′,X ′′) of G′′. The analysis of the algorithm shows the existence of a surjec-
tive mapping from the cut vertices of G′ to the edges in E ′′ \ E ′. A counting
argument based on this surjective mapping shows that the width of the path
decomposition (P ′′,X ′′) is at most 16p + 15. For making our presentation
simpler, if a block Bi is just an edge (u, v), we abuse the definition of a Hamil-
tonian cycle and say that u and v are clockwise neighbors of each other in the
Hamiltonian cycle of Bi.

Recall that for every cut vertex x of G′, G′ \x has exactly two components.
Since any cut vertex belongs to exactly two blocks of G, based on the rooted
block tree structure of G, we call them the parent block containing x and the
child block containing x. We use childx(B) to denote the unique child block
of the block B at the cut vertex x and parent(B) to denote the parent block
of the block B. For a block B, nextB(v) denotes the successor of the vertex
v in the Hamiltonian cycle of B. We say that a vertex u is encountered by
the algorithm, when u gets assigned to the variable v′, during the execution of
the algorithm. The block referred to by the variable B represents the current
block being traversed.

To get a high level picture of our algorithm, the reader may consider it as
a traversal of vertices of G′, starting from a non-cut vertex in the root block
of G′ and proceeding to the successor of v on reaching a non-cut vertex v. On
reaching a cut vertex x, the algorithm bypasses x and recursively traverses the
child block containing x and its descendant blocks, starting from the successor
of x in child block containing x. After this, the algorithm comes back to
x to visit it, and continues the traversal of the remaining graph, by moving
to the successor of x in the parent block containing x. Before starting the
recursive traversal of the child block containing x and its descendant blocks,
the algorithm sets bypass(x) = TRUE. (Note that, since there is only one child
block attached to any cut vertex, each cut vertex is bypassed only once.) In this
way, when a sequence of one or more cut vertices is bypassed, an edge is added
from the vertex visited just before bypassing the first cut vertex in the sequence
to the vertex visited just after bypassing the last cut vertex in the sequence.
The path decomposition is also modified, to reflect this edge addition. The
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detailed algorithm to 2-vertex-connect G′ is given in Algorithm 4.
If G′ has only a single vertex, then it is easy to see that the algorithm

does not modify the graph. For the rest of this section, we assume that this is
not the case. The following recursive definition is made in order to make the
description of the algorithm easier.

Definition 5.4. Let G be a connected outerplanar graph with at least two
vertices such that G \ x has exactly two connected components for every cut
vertex x and v be a non-cut vertex in the root block of G. For any cut vertex x
of G, let Gx denote the subgraph of G induced on the vertices belonging to the
unique child block attached at x and all its descendant blocks. If the root-bock
of G is a non-trivial block, let v, v1, . . . , vt, v be the Hamiltonian cycle of the
root-block of G, starting at v. Then,

Order(G, v) =


v, v1 if G is a single edge (v, v1)
v, v1, . . . , vt if G is 2-vertex-connected
v, S1, . . . , St otherwise

where, for each 1 ≤ i ≤ t,

Si =

vi if vi is not a cut vertex in G
Order(Gvi , vi), vi otherwise.

The following lemma gives a precise description of the order in which the
algorithm encounters vertices of G′.

Lemma 5.7. Let G′ be a connected outerplanar graph with at least two ver-
tices, such that for every cut vertex x of G′, G′ \ x has exactly two connected
components. If G′ is given as the input graph to Algorithm 4 and v0 is the non-
cut vertex in the root block of G′ from which the algorithm starts the traversal,
then Order(G′, v0) is the order in which Algorithm 4 encounters the vertices
of G′.

Since the proof of this lemma is easy but is lengthy and detailed, in order
to make the reading easier we defer the proof to Section 5.9. Now, using
Lemma 5.7 we derive some properties maintained by Algorithm 4.

Property 5.5.

1. Every non-cut vertex of G′ is encountered exactly once. Every cut vertex
of G′ is encountered exactly twice.

2. A non-cut vertex is completed when it is encountered for the first time.
A cut vertex is bypassed when it is encountered for the first time and is
completed when it is encountered for the second time. Each cut vertex is
bypassed exactly once.
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Algorithm 4: Computing a 2-vertex-connected outerplanar supergraph
Input: A connected outerplanar graph G′(V , E ′) such that G′ \ x has

exactly two connected components for every cut vertex x of G′.
A path decomposition (P ′,X ′) of G′. The rooted block tree of
G′, the Hamiltonian cycle of each non-trivial block of G′ and
the first and last vertices of each non-root block of G′

Output: A 2-vertex-connected outerplanar supergraph G′′(V , E ′′) of
G′, a path decomposition (P ′′,X ′′) of G′′

1 E ′′ = E ′, (P ′′,X ′′) = (P ′,X ′)
2 for each vertex v ∈ V (G′) do
3 completed(v) = FALSE
4 if v is a cut vertex then bypass(v) = FALSE
5 B = rootBlock
6 Choose v′ to be some non-cut vertex of the rootBlock
7 completed(v′) =TRUE, completedCount = 1
8 v = v′

9 while completedCount < |V (G′)| do
10 v′ = nextB(v)
11 bypassLoopTaken =FALSE, sequence = EmptyString
12 while v′ is a cut vertex and bypass(v′) is FALSE do
13 bypassLoopTaken =TRUE
14 bypass(v′) =TRUE, sequence =Concatenate(sequence, v′)
15 B = childv′(B), v′ = nextB(v′)
16 if bypassLoopTaken is TRUE then
17 e = (v, v′), bypassSeq(e) = sequence

18 E ′′ = E ′′ ∪ {e}
19 if GapX ′(v, v′) 6= ∅ then
20 if LastIndexX ′(v) < FirstIndexX ′(v′) then for

t ∈ GapX ′(v, v′) do X ′′t = X ′′t ∪ {v}
21 else if LastIndexX ′(v′) < FirstIndexX ′(v) then for

t ∈ GapX ′(v, v′) do X ′′t = X ′′t ∪ {v′}

22 if v′ is a cut vertex and bypass(v′) is TRUE then
23 B = parent(B)
24 completed(v′)= TRUE, completedCount = completedCount+ 1
25 v = v′
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3. Every vertex is completed exactly once and a vertex that is declared com-
pleted is never encountered again.

Proof. The first part of the property follows directly from Lemma 5.7.
To prove the second part, observe that a vertex u is encountered only in

Lines 6, 10 or 15. If v′ = u is a non-cut vertex, the inner while-loop will not be
entered. The vertex u is completed in Line 7 or Line 24 before another vertex
is encountered by executing Line 10 again.

For any cut vertex x, bypass(x) = FALSE initially and it is changed only
after x is encountered and the algorithm enters the inner while-loop with v′ =
x. When x is first encountered, bypass(x) is FALSE and the algorithm gets
into the inner while-loop and inside this loop bypass(x) is set to TRUE. After
this, bypass(x) is never set to FALSE. Therefore, when x is encountered for the
second time, the inner while-loop is not entered and before v′ gets reassigned,
x is completed in Line 24.

The third part of the property follows from the first two parts and Lemma 5.7.

Lemma 5.8. Each cut vertex of G′ is bypassed exactly once by the algorithm
and is associated with a unique edge in E ′′ \ E ′. Every edge e ∈ E ′′ \ E ′
has a non-empty sequence of bypassed cut vertices associated with it, given by
bypassSeq(e). Hence, the function f : cut vertices of G′ 7→ E ′′ \E ′, defined as

f(x) = e such that x is present in bypassSeq(e)

is a surjective map.

Proof. From Property 5.5, each cut vertex x of G′ is bypassed exactly once
by the algorithm. Note that when x is bypassed in Line 14, x is appended to
the string sequence and the variable bypassLoopTaken was set to TRUE in the
previous line. On exiting the inner while-loop, since bypassLoopTaken=TRUE,
an edge is added in Line 18. Before adding the new edge e, in the previous line
the algorithm set bypassSeq(e) to be the sequence of cut vertices accumulated
in the variable sequence. As we have seen, x is present in the string sequence
and it is clear from the algorithm that sequence was not reset to emptystring
before assigning it to bypassSeq(e). Therefore, x is present in bypassSeq(e).
In the next iteration of the outer while-loop, sequence is reset to emptystring.
Since x is bypassed only once, it will not be added to the string sequence again
nor it will be part of bypassSeq(e′) for any other edge e′.

An edge e gets added in Line 18 only if bypassLoopTaken is TRUE, while
executing Line 16. However, the variable bypassLoopTaken is set to FALSE in
the outer while-loop every time just before entering the inner while-loop and
is set to TRUE only inside the inner while-loop, where at least one cut vertex
is bypassed in Line 14 and is added to sequence. Until the algorithm exits
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from the inner while-loop, and the next edge e is added, bypassLoopTaken is
maintained to be TRUE. This ensures that bypassSeq(e) is a non-empty string
for each edge e ∈ E ′′ \ E ′.

Property 5.6. Let e = (ui, vi) be an edge such that, at the time of adding the
edge e in Line 18 of Algorithm 4, the variable v contained the value ui and the
variable v′ contained the value vi.

• The vertex v = ui is already completed at this time and the vertex vi is
completed subsequently.

• Cut vertices that belong to bypassSeq(e) are precisely the vertices by-
passed during the period from the execution of Line 10 just before adding
the edge e in Line 18 to the time when e is added in Line 18. These ver-
tices were bypassed in the order in which they appear in bypassSeq(e).

• Each cut vertex bypassed before bypassing the first cut vertex that belong
to bypassSeq(e) belongs to the bypass sequence of one of the edges in
E ′′ \ E ′ which was added before e.

• If bypassSeq(e) = x1, x2, . . . , xk, then ui = x0, x1, x2, . . . , xk, xk+1 = vi is
a path in G′ such that

– for each 1 ≤ i ≤ k, xi is the successor of xi−1 in the Hamiltonian
cycle of the parent block in G′, at the cut vertex xi.

– vi = xk+1 is the successor of xk in the Hamiltonian cycle of the child
block in G′, at the cut vertex xk.

Since each bypassed vertex is a cut vertex in G′, it is easy to see that
e = (ui, vi) was not already an edge in G′.

Proof. Suppose that at the time of adding the edge e in Line 18 of Algorithm 4,
the variable v contained the value ui and the variable v′ contained the value vi.
Observe that the variable v always gets its value from the variable v′ in lines
8 and 25 and just before this, in Lines 7 and 24 v′ was declared completed.
Therefore the vertex assigned to v is always a completed vertex. Therefore,
at the time of adding the edge e in Line 18, the vertex v = ui is already
completed. After the edge is added in Line 18, in Line 24 the vertex assigned
to v′ = vi is completed. Since by Property 5.5 a vertex is completed only once,
this is the only time at which vi is completed.

Since each cut vertex is bypassed only once, and is added to the bypass
sequence of the next edge added (see the proof of Lemma 5.8), it is clear that
if a cut vertex is bypassed before x1, it should belong to the bypass sequence
of an edge in E ′′ \E ′ added before e. The remaining parts of the property are
easy to deduce from lines 12 - 15 and Line 17 of the algorithm.
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Lemma 5.9. G′′ is 2-vertex-connected.

Proof. We show that G′′ does not have any cut vertices. Since G′′ is a su-
pergraph of G′, if a vertex x is not a cut vertex in G′, it will not be a cut
vertex in G′′. We need to show that the cut vertices in G′ become non-cut
vertices in G′′. Consider a newly added edge (u, v) of G′′. Without loss of
generality, assume that u was completed before v in the traversal and for
e = (u, v), bypassSeq(e) = (x1, x2, . . . , xk). By Property 5.6, u, x1, x2, . . . , xk, v

is a path in G′. When our algorithm adds the edge (u, v), it creates the cycle
u, x1, x2, . . . , xk, v, u in the resultant graph. Recall that, for each 1 ≤ i ≤ k,
G′ \ xi had exactly two components; one containing xi−1 and the other con-
taining xi+1. After the addition of the edge (u, v), vertices xi−1, xi and xi+1

lie on a common cycle. Hence, after the edge (u, v) is added, for 1 ≤ i ≤ k,
xi is no longer a cut vertex. Since by Lemma 5.8 every cut vertex in G′ was
part of the bypass sequence associated with some edge in E ′′ \E ′, all of them
become non-cut vertices in G′′.

To prove that G′′ is outerplanar, we can imagine the edges in E ′′ \E ′ being
added to G′ one at a time. Our method is to repeatedly use Lemma 5.3 and
show that after each edge addition, the resultant graph remains outerplanar.
We will first note down some properties maintained by Algorithm 4.

Let {ei = (ui, vi) | 1 ≤ i ≤ m = |E ′′ \ E ′|} be the set of edges added
by Algorithm 4. Assume that, for each 1 ≤ i < m, (ui, vi) was added before
(ui+1, vi+1) and at the time of adding the edge ei in Line 18 of Algorithm 4,
the variable v contained the value ui and the variable v′ contained the value
vi. By Property 5.6, ui is completed before vi. Let bypassSeq((ui, vi)) =
xi1, x

i
2, . . . , x

i
ki
, where ki ≥ 1, and P i = (ui = xi0, x

i
1, x

i
2, ..., x

i
ki
, xiki+1 = vi) be

the associated path in G′ (Property 5.6). Let Bi
j denote the block containing

the edge (xij, xij+1) in G′. Clearly, B1
0 is the root block of G′. The following

statement is an immediate corollary of Property 5.6, with the definitions above.

Property 5.7. For each 0 ≤ j ≤ ki, the vertex xij+1 is the successor of the
vertex xij in the Hamiltonian cycle of the block Bi

j. The path P i shares only
one edge with any block of G′.

Property 5.8. If 1 ≤ i < j ≤ m = |E ′′ \ E ′|, then ui 6= uj.

Proof. By our assumption, at the time of adding the edge (ui, vi), we had
v = ui and v′ = vi. By Property 5.6, the vertex v = ui was already completed
at this time. After adding the edge (v, v′) = (ui, vi), the algorithm reassigns
v = v′ = vi in Line 25. By Property 5.5, the algorithm will never encounter the
completed vertex ui again, and this means that v′ is never set to ui in future.
This also implies that v is never set to ui in future, since v gets reassigned
later only in Line 25, where it gets its value from the variable v′. Since v = uj
when the edge (uj, vj) is added, we have ui 6= uj.
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At a stage of Algorithm 4, we say that a non-root block B is touched, if
at that stage Algorithm 4 has already bypassed the cut vertex y such that B
is the child block containing y. At any stage of Algorithm 4, we consider the
root block of G′ to be touched.

Property 5.9. When Algorithm 4 has just finished adding the edge (ui, vi), the
touched blocks are precisely B1

0 ∪
⋃

1≤j≤i{Bj
1, . . . , B

j
kj
}. This implies that if

i < m, the blocks {Bi+1
1 , Bi+1

2 , . . . , Bi+1
ki
} remain untouched when the algorithm

has just finished adding the edge (ui, vi).

Proof. The root block B1
0 is always a touched block by definition and the other

touched blocks when Algorithm 4 has just finished adding the edge (ui, vi)
are the child blocks attached to cut vertices bypassed so far. However, by
Property 5.6, when Algorithm 4 has just finished adding the edge (ui, vi), a
cut vertex x is already bypassed if and only if x belongs to bypassSeq(ej) for
some j ≤ i. For j ≤ i, we had bypassSeq((uj, vj)) = xj1, x

j
2, . . . , x

j
kj

and for
1 ≤ l ≤ kj, Bj

l is the child block attached at xjl by the last part of Property 5.6.
Hence, the initial part of the property holds. From this, the latter part of the
property follows, by Lemma 5.8.

Property 5.10. For each 2 ≤ i ≤ m, when the algorithm has just finished
adding the edge (ui−1, vi−1), the block Bi

0 is a touched block.

Proof. If Bi
0 is the root block, the property is trivially true. Assume that this

is not the case.
Consider the situation when the algorithm has just finished adding the edge

(ui−1, vi−1) in Line 18. By Property 5.6, the next cut vertex to be bypassed is
xi1, which is the first vertex appearing in bypassSeq(ei), and Bi

0 is the parent
block attached at xi1. Let y be the cut vertex such that Bi

0 is the child block
at y. If y has been encountered by now, y would have been bypassed (Prop-
erty 5.5), making Bi

0 a touched block. Since a cut vertex is bypassed when it
is encountered for the first time (Property 5.5) and y is the first vertex the
algorithm encounters among the vertices in the block Bi

0 (Lemma 5.7), if y is
not yet encountered, it will contradict the fact that xi1 is the next cut vertex
to be bypassed, because xi1 is a vertex in Bi

0. Therefore y should have been
encountered earlier and therefore, Bi

0 is a touched block.

Lemma 5.10. G′′ is outerplanar.

Proof. Let G′0 = G′ and for each 1 ≤ i ≤ m, let G′i(V,E ′i) be the graph
obtained by assigning E ′i = E ′∪{(uj, vj) | 1 ≤ j ≤ i}. Let M0 denote the root
block of G′. We will prove that Algorithm 4 maintains the following invariants
for each 0 ≤ i ≤ m:

• The graph G′i is outerplanar.
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• When the algorithm has just finished adding the edge (ui, vi), the set
of touched blocks, ⋃1≤j≤i{Bj

0, B
j
1, . . . , B

j
kj
}, have merged together and

formed a single block, which we call as the merged blockM i in G′i. M i

will be taken as the root block of G′i. The other blocks of G′ remain the
same in G′i.

• If i < m, xi+1
1 is the successor of ui+1 in the Hamiltonian cycle of the

block M i.

By Lemma 5.5, G′0 = G′ is outerplanar and it is clear that the above invariants
hold for G′0. Assume that the invariants hold for each i, where 1 ≤ i < h ≤ m.
Consider the case when i = h. Since the invariants hold for h − 1, xh1 is the
successor of uh in the Hamiltonian cycle of the block Mh−1. By Property 5.9,
the blocks {Bh

1 , B
h
2 , . . . , B

h
kh
} are untouched when the algorithm has just added

the edge (uh−1, vh−1). Since the invariants hold for h− 1, these blocks remain
the same in G′h−1 as in G′. Therefore, the path P h = (uh, xh1 , xh2 , . . . , xhkh , vh)
continues to satisfy the pre-conditions of Lemma 5.3 in G′h−1 (Property 5.7).
On addition of the edge (uh, vh) to G′h−1, the resultant graph G′h is outerplanar,
by Lemma 5.3.

By Property 5.9, the blocks {Bh
1 , B

h
2 , . . . , B

h
kh
} are precisely the blocks

that were not touched at the time when eh−1 was just added but became
touched by the time when eh is just added. However, by Lemma 5.4, the
blocks {Bh

1 , B
h
2 , . . . , B

h
kh
} merges with Mh−1 and forms the block Mh of G′h

and other blocks of G′h are same as those of G′h−1 (and hence of G′) when the
edge eh is added. Thus, all touched blocks have merged together to form the
block Mh in Gh and the other blocks of G′ remain the same in Gh.

Finally, we have to prove that the successor of uh+1 in the Hamiltonian
cycle of the block Mh is xh+1

1 , which is the same as the successor uh+1 in the
Hamiltonian cycle of the block Bh+1

0 inG′. To see this, note that by Lemma 5.4,
if v′ is the successor of v in the block containing the edge (v, v′) before an
edge (uj, vj) is added, it remains so after adding this edge, unless v = uj.
By Property 5.8, uh+1 6= uj for any j < h + 1 and hence it follows that xh+1

1
remains the successor uh+1 in the block containing the edge (uh+1, x

h+1
1 ) in G′h.

Hence, in order to prove that xh+1
1 is the successor of uh+1 in the Hamiltonian

cycle of the block Mh, it suffices to prove that the edge (uh+1, x
h+1
1 ) belongs

to the block Mh in G′h. In the previous paragraph we saw that, at the time of
adding the edge (uh, vh), all the touched blocks so far have merged together to
form the the block Mh of G′h. Since the edge (uh+1, x

h+1
1 ) is in the block Bh+1

0
in G′, which is a touched block by Property 5.10 when the algorithm has just
finished adding the edge (uh, vh), the block Bh+1

0 has also been merged into
Mh and hence, the edge (uh+1, x

h+1
1 ) is in the block Mh in G′h.

Thus, all the invariants hold for i = h and hence for each 1 ≤ i ≤ m. Since
G′′ = G′m by definition, G′′ is outerplanar.
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Lemma 5.11. (P ′′,X ′′) is a path decomposition of G′′ of width at most 16p+
15.

Proof. It is clear that (P ′′,X ′′) is a path decomposition of G′′, since we con-
structed it using the method explained in Section 5.2.

For each ei = (ui, vi) ∈ E ′′ \ E ′, let bypassSeq(ei) = xi1, x
i
2, . . . , x

i
ki

and let
Si denote the set of cut vertices that belong to bypassSeq(ei). By Property 5.6,
ui, x

i
1, . . . , x

i
ki
, vi is a path in G′.

We will show that, if t ∈ GapX ′(ui, vi), then, X ′t ∩ Si 6= ∅. Without loss
of generality, assume that LastIndexX ′(ui) < FirstIndexX ′(vi). Since ui is
adjacent to xi1, both of them are together present in some bag X ′t ∈X ′, with
t ≤ LastIndexX ′(ui). Similarly, since vi is adjacent to xiki , they both are
together present in some bag X ′t ∈ X ′, with t ≥ FirstIndexX ′(vi). Suppose
some bag X ′t ∈ X ′ with t ∈ GapX ′(ui, vi) does not contain any element of
Si. Let Ui = {xij ∈ Si | xij belongs to X ′t′ ∈ X ′ for some t′ < t} and
Vi = {xij ∈ Si | xij belongs to X ′t′ ∈X ′ for some t′ > t}. From the definitions,
xi1 ∈ Ui and xiki ∈ Vi. If Ui ∩ Vi 6= ∅, the vertices belonging to Ui ∩ Vi will
be present in X ′t as well, which is a contradiction. Therefore, (Ui, Vi) is a
partitioning of Si. Let q be the maximum such that xiq ∈ Ui. Clearly, q < ki.
Since (xiq, xiq+1) is an edge in G′, both xiq and xiq+1 should be simultaneously
present in some bag in X ′. But this cannot happen because xiq ∈ Ui and
xiq+1 ∈ Vi. This is a contradiction and therefore, if t ∈ GapX ′(ui, vi), then,
X ′t ∩ Si 6= ∅.

By the modification done to the path decomposition to reflect the addition
of an edge ei, a vertex was inserted into X ′′t ∈X ′′ only if t ∈ GapX ′(ui, vi) and
for eachX ′′t ∈X ′′ such that t ∈ GapX ′(ui, vi), exactly one vertex (ui or vi) was
inserted into X ′′t while adding ei. Moreover, when this happens, X ′t ∩ Si 6= ∅.
Therefore, for any t in the index set, |X ′′t | ≤ |X ′t|+ |{i | 1 ≤ i ≤ m,Si ∩X ′t 6=
∅}|. But, |{i | 1 ≤ i ≤ m,Si ∩ X ′t 6= ∅}| ≤ |X ′t|, because Si ∩ Sj = ∅, for
1 ≤ i < j ≤ m, by Lemma 5.8. Therefore, for any t, |X ′′t | ≤ 2|X ′t| ≤ 2(8p+ 8).
Therefore, width of the path decomposition (P ′′,X ′′) is at most 16p+ 15.

5.8 Time Complexity
For our preprocessing, we need to compute a rooted block tree of the given
outerplanar graph G and compute the Hamiltonian cycles of each non-trivial
block. These can be done in linear time [30, 60, 90]. The special tree de-
composition construction in Govindan et al.[56] is also doable in linear time.
Using the Hamiltonian cycle of each non-trivial block, we do only a linear time
modification in Section 5.4, to produce the nice tree decomposition (T,Y ) of
G of width 3. An optimal path decomposition of the tree T , can be computed
in O(n log n) time [85]. For computing the nice path decomposition (P ,X ) of
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G in Section 5.4, the time spent is linear in the size of the path decomposition
obtained for T , which is O(n log n) [85], and the size of (P ,X ) is O(n log n).
Computing the FirstIndex, LastIndex and Range of vertices and the sequence
number of blocks can be done in time linear in the size of the path decompo-
sition. Since the resultant graph is outerplanar, Algorithm 3 and Algorithm 4
adds only a linear number of new edges. Since the size of each bag in the
path decompositions (P ′,X ′) of G′ and (P ′′,X ′′) of G′′ are only a constant
times the size of the corresponding bag in (P ,X ), the time taken for modify-
ing (P ,X ) to obtain (P ′,X ′) and later modifying it to (P ′′,X ′′) takes only
time linear in size of (P ,X ); i.e., O(n log n) time. Hence, the time spent in
constructing G′′ and its path decomposition of width O(pw(G)) is O(n log n).

5.9 Proof of Lemma 5.7
For any cut vertex y of G′, let s(y) denote the Hamiltonian cycle successor of y
in the (unique) child block at y and let G′y denote the subgraph of G′ induced
on the vertices belonging to the child block attached at y and its descendant
blocks. We call the variables v′, v, B, completed[ ], bypass[ ], completedCount
the variables relevant for the traversal. First we prove two basic lemmas which
makes the proof of Lemma 5.7 easier.

Lemma 5.12. At any point of execution, if a non-cut vertex u is encoun-
tered, i.e., v′ is set to u, until a cut vertex is encountered in Line 10 or
completedCount = |V (G)|, from each vertex the algorithm proceed to en-
counter its Hamiltonian successor in the current block, completing it and in-
crementing the completedCount by one each time.

Proof. If u is encountered in Line 6, the next vertex is encountered in Line 10,
inside the outer while-loop. When v′ is a non-cut vertex encountered in Line 10
or Line 15, the inner while-loop condition and the condition in Line 22 will be
evaluated to false until a cut vertex is encountered in Line 10. Therefore, the
variables relevant for the traversal can get updated in lines 24-25 and lines 10-
11 only, until v′ gets assigned to refer to a cut vertex. From this, the property
follows.

Lemma 5.13. Suppose at a certain time T1 of execution, Algorithm 4 has just
executed Line 12 and the variable v′ is referring to a cut vertex x in G′ and
the following conditions are also true:

C1. The current block being traversed, i.e. the block referred to by the variable
B, is the parent block at x.

C2. bypass(x) =FALSE and for each cut vertex y of G′x, bypass(y) =FALSE.
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C3. For each vertex y of G′x, completed(y) = FALSE and completedCount =
c, where c ≤ |V (G′)| − |V (G′x)|

Then, the algorithm will again come to Line 12 with the variable v′ referring
to the same cut vertex x. Let T2 be the next time after T1 when this happens.
At time T2, the following conditions will be true:

E1. The current block being traversed is the child block at x and during the
time between T1 and T2 the algorithm never sets the variable B to a block
other than the child block at x or its descendant blocks.

E2. bypass(x) =TRUE and for each cut vertex y of G′x, bypass(y) =TRUE.

E3. completed(x) =FALSE and for each vertex y of G′x other than x,
completed(y) =TRUE and completedCount = c+|V (G′x)|−1 < |V (G′)|.

E4. The order in which the algorithm encounters vertices during the period
from the time x was encountered just before T1 and till the time T2 is
Order(G′x, x), x.

Proof. We give a detailed proof of this lemma below, which is in principle just
a description of the execution of the algorithm. Instead of going through the
proof, the reader may verify the correctness of the lemma directly from the
algorithm.

We prove this lemma using an induction on n(x), the number of blocks
in G′x. For the base case, assume that nx = 1; i.e., G′x is a leaf block of
G′. Suppose the assumptions in the statement of the lemma hold at time T1.
By this assumption, the condition of the inner while-loop in Line 12 has been
evaluated to true at time T1 and after executing Line 14 bypass(x) will be set to
TRUE. Similarly, it follows from the assumptions that after executing Line 15
the current block is set as the child block at x and the algorithm sets v′ = s(x),
the successor of x in the child block at x. Since the child block at x is a leaf
block, v′ = s(x) is not a cut vertex. By Lemma 5.12, until v′ gets assigned
to refer to a cut vertex, from each vertex the algorithm proceed to encounter
its Hamiltonian successor in the current block, completing it and incrementing
the completedCount by one each time. Note that completedCount < |V (G′)|
all this time, because at time T1, we had c ≤ |V (G′)|−|V (G′x)| and the number
of times completedCount was incremented since time T1 is less than |V (G′x)|.
Since the only cut vertex in the current block is x itself, this goes on until x
is encountered in Line 10 and then it reaches Line 12 at time T2. From this,
it follows that the order in which vertices were encountered during the period
from the time x was encountered just before T1 and till the time T2 is the
Hamiltonian cycle order of the child block at x, starting and ending at x. This
is precisely Order(G′x, x), x. It is evident that conditions E1 - E3 are also true
at time T2.
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Now, we will assume that the lemma holds for all cut vertices y such that
n(y) < n(x). In order to prove the lemma, it is enough to prove that the
lemma holds for x as well. Let x, v1, v2, . . . , vt, x be the Hamiltonian cycle of
the child block at x. Suppose the assumptions in the statement of the lemma
hold at time T1 when the Algorithm 4 has just executed Line 12 and v′ = x.
As in the base case, bypass(x) will be set to TRUE and in Line 15 the current
block is set as the child block at x and the algorithm sets v′ = s(x) = v1.

If the set {v1, v2, . . . , vt} does not contain any cut vertices, we are in the base
case and we are done. Otherwise, let l be the minimum index in {1, 2, . . . , t}
such that vl is a cut vertex. By Lemma 5.12, from each vertex the algorithm
proceed to encounter its Hamiltonian successor in the current block, complet-
ing it and incrementing the completedCount each time until v′ = vl. Notice
that completedCount = c+l−1 ≤ |V (G′)|−|V (G′x)|+l−1 ≤ |V (G′)|−|V (G′vl)|,
when vl is encountered in Line 10. After this, the algorithm reaches Line 12
and executes it with v′ = vl at time T ′l . At this time, the block being tra-
versed is the parent block at vl. Since vl or any other vertex in G′vl were not
encountered till now after T1, and by the assumptions of the lemma about
the state of the traversal related variables at time T1, we know that at time
T ′l , bypass(vl) =FALSE and for each cut vertex z of G′vl , bypass(z) =FALSE.
Similarly, for each vertex y of G′vl , completed(y) = FALSE. Thus, the pre-
conditions of the lemma are satisfied for the vertex vl and G′l at time T ′l .

The order in which the vertices are encountered during the period from the
time x was encountered just before T1 and till the time T ′l is x, v1, v2, . . . , vl.
Since vl is a cut vertex in the child block at x, n(vl) < n(x). Therefore,
by induction hypothesis, the algorithm will again come to Line 12 with the
variable v′ = vl and if T ′′l is the next time this happens after Tl, the conditions
E1 - E4 will be satisfied with vl replacing x, T ′l and T ′′l replacing T1 and T2

respectively and c+ l − 1 replacing c.
At time T ′′l , when the algorithm is back at Line 12 and executes the line

with v′ = vl and bypass(vl) =TRUE, the while-loop condition will evaluate
to FALSE and so, the loop will not be entered. When the algorithm reaches
Line 22, the condition will evaluate to true and therefore, in Line 23, the
variable B will be updated to its parent block. Since B is the child block
at vl before this, B will be updated to the parent block at vl, which is the
same as the child block at x. In Line 24, completed(vl) is set to TRUE and
completedCount becomes c + l − 1 + |V (G′vl)| < |V (G′)| and therefore, in
Line 9, the outer while-loop condition evaluates to TRUE. Since v′ = vl now,
the algorithm executes Line 10, and v′ will be updated to vl+1, the successor of
vl in B. From the time x was encountered just before T1, the order in which the
algorithm has encountered vertices is x, v1, v2, . . . , vl−1, Order(G′vl , vl), vl, vl+1.

By repeating similar arguments as above, we can reach the following con-
clusion. If i is the maximum index in {1, 2, . . . , t} such that vi is a cut vertex,
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the algorithm will come to Line 12 with the variable v′ = vi at time T ′′i such
that the conditions below will be true at time T ′′i .

• The current block being traversed is the child block at vi. During the
time between T1 and T ′′i the algorithm never sets the variable B to a
block other than the child block at x or its descendant blocks.

• For each cut vertex y of G′x, bypass(y) =TRUE.

• For vk ∈ {vi, vi+1, . . . , vt, x}, completed(vk) =FALSE and for each vertex
y of G′x outside this set, completed(y) =TRUE. Moreover,
completedCount = c+ i− 1 +∑

1≤j≤i,vj is a cut vertex (|V (G′vj)| − 1).

• The order in which the algorithm encounters vertices during the period
from the time x was encountered just before T1 and till the time T ′′i is
given by x, S1, . . . , Svi , where for 1 ≤ j ≤ i, Sj = vj if vj is not a cut
vertex in G′ and Sj = Order(G′vj , vj), vj otherwise.

By similar arguments as at time T ′′l , we can show that, at the time T ′′i , the inner
while-loop condition is false, because bypass(vi) =TRUE and in Line 23 the
variable B will be updated to the child block at x. In Line 24, completed(vi)
is set to TRUE and completedCount becomes
c+ i+∑1≤j≤i,vj is a cut vertex (|V (G′vj)| − 1). Since this value is less than |V (G′)|,
in Line 9 the outer while-loop condition evaluates to TRUE. Since v′ = vi now,
the algorithm executes Line 10, and v′ will be updated to the successor of vi
in B.

If vi = vt, then at this stage, v′ = x and when the algorithm reaches
Line 12, that is the time T2 mentioned in the lemma and the order in which
the algorithm has encountered vertices is x, S1, . . . , Svt , x, where for 1 ≤ j ≤ t,
Sj = vj if vj is not a cut vertex in G′ and Sj = Order(G′vj , vj), vj other-
wise. If vi 6= vt, by the maximality of i and using Lemma 5.12, until v′ gets
assigned the value x in Line 10, from each vertex the algorithm proceed to en-
counter its Hamiltonian successor in the current block, completing it and incre-
menting the completedCount each time. We have completedCount < |V (G′)|
all this time, because at time T1 we had completedCount = c and after-
wards completedCount was incremented once for each vertex y in G′x for
which completed(y) = TRUE but completed(x) =FALSE still. When x is
encountered in Line 10 and then the algorithm reaches Line 12, that is the
time T2 mentioned in the lemma. From the time when x was encountered
just before T1, the order in which the algorithm has encountered vertices is
x, S1, . . . , Svt , x, where for 1 ≤ j ≤ i, Sj = vj if vj is not a cut vertex in G′ and
Sj = Order(G′vj , vj), vj otherwise. Thus, in both cases, at time T2 the order in
which the algorithm has encountered vertices from the time when x was en-
countered just before T1 is given by x, S1, . . . , Svt , x = Order(G′x, x), x. Notice



5.9. Proof of Lemma 5.7 107

also that the conditions E1-E3 also hold at time T2 and hence the lemma is
proved.

Lemma 5.7. If G′ is given as the input graph to Algorithm 4, where G′ is
a connected outerplanar graph with at least two vertices, such that for every
cut vertex x of G′, G′ \ x has exactly two connected components, and if v0 is
the non-cut vertex in the root block of G′ from which the algorithm starts the
traversal, then Order(G′, v0) is the order in which Algorithm 4 encounters the
vertices of G′.

Proof. Suppose v0, v1, . . . , vt, v0 is the Hamiltonian cycle of the root block of
G′. Our method is to use Lemma 5.13 at each cut vertex in the root block
of G′ and Lemma 5.12 at each non-cut vertex in the root block of G′, un-
til completedCount = |V (G′)|. We will see that this will go on until vt is
completed.

After the initializations done in lines 2 - 7, for every cut vertex y in
G′, bypass(y) =FALSE, current block B is the root block of G′, v′ = v0,
completedCount = 1, completed(v0)=TRUE and for every other vertex y in
G′, completed(y) =FALSE. Since the outer while-loop condition is TRUE, the
algorithm enters the loop and in Line 10, v1 is encountered. Let us call this
instant as time T1.

If the set {v1, v2, . . . , vt} contains a cut vertex, let l be the minimum index in
{1, 2, . . . , t} such that vl is a cut vertex. Otherwise, let vl = vt. By Lemma 5.12,
until v′ gets assigned the value vl in Line 10, from each vertex the algorithm
proceed to encounter its Hamiltonian successor in the current block (i.e the
root block), completing it and incrementing the completedCount each time,
making completedCount = l < |V (G′)| when vl is encountered in Line 10. The
algorithm then reaches Line 12 and executes it with v′ = vl. Let us call this
instant as time T ′l . The order in which the vertices are encountered from the
beginning of execution of the algorithm is v0, v1, v2, . . . , vl.

If vl = vt and vl is not a cut vertex, that means the graph G′ does not
have a cut vertex and |V (G′)| = t + 1. In this case, the inner while-loop
condition evaluates to FALSE. Similarly, the condition in Line 22 also eval-
uates to FALSE. In Line 24, the algorithm sets completed(vt) =TRUE and
increments completedCount, making completedCount = t + 1 = |V (G′)|.
When the algorithm executes Line 9, the outer while-loop condition evalu-
ates to FALSE and the algorithm terminates. The order in which the ver-
tices were encountered from the beginning of execution of the algorithm is
v0, v1, . . . , vt = Order(G′, v0).

The other case is when vl is a cut vertex at time T ′l . At this time,
completedCount = l ≤ |V (G′)| − |V (G′l)| and by similar arguments as in
the proof of Lemma 5.13, the pre-conditions of the lemma are satisfied for the
vertex vl and G′l at time T ′l . Therefore, by Lemma 5.13 applied to the vertex
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vl and G′l, the algorithm will again come to Line 12 with the variable v′ = vl.
If T ′′l is the next time this happens after T ′l , we can see that the state of the
traversal related variables at time T ′′l is similar to those we obtained in the
proof of Lemma 5.13, except that completedCount = l + |V (G′vl)| − 1.

Following similar arguments as in the proof of Lemma 5.13, we can show
that when the algorithm executes Line 23 the next time after T ′′l , the variable
B will be updated to the parent block at vl, which is the same as the root
block. In Line 24, completed(vl) is set to TRUE and completedCount becomes
l + |V (G′vl)|.

By repeating similar arguments as in the proof of Lemma 5.13, we can
reach the following conclusion. If i is the maximum index in {1, 2, . . . , t} such
that vi is a cut vertex, the algorithm will come to Line 12 with the variable
v′ = vi at time T ′′i such that the conditions below will be true at time T ′′i .

• The current block being traversed is the child block at vi.

• For each cut vertex y of G′, bypass(y) =TRUE.

• For vk ∈ {vi, vi+1, . . . , vt}, completed(vk) =FALSE and for each vertex y
of G′ outside this set, completed(y) =TRUE. Moreover, completedCount
= i+∑

1≤j≤i,vj is a cut vertex (|V (G′vj)| − 1).

• The order in which the algorithm encounters vertices from the beginning
of execution of the algorithm till the time T ′′i is given by v0, S1, . . . , Svi ,
where for 1 ≤ j ≤ i, Sj = vj if vj is not a cut vertex in G′ and Sj =
Order(G′vj , vj), vj otherwise.

By similar arguments as earlier, when the algorithm executes Line 23 the next
time after T ′′i , the variable B will be updated to the parent block at vi, which
is the same as the root block. In Line 24, completed(vi) is set to TRUE and
completedCount becomes i+ 1 +∑

1≤j≤i,vj is a cut vertex (|V (G′vj)| − 1).
If the above sum is equal to |V (G′)|, that means vi = vt. When the algo-

rithm executes Line 9, the outer while-loop condition evaluates to FALSE and
the algorithm terminates. The order in which the vertices were encountered
from the beginning of execution of the algorithm is v0, S1, . . . , Svt , where for
1 ≤ j ≤ t, Sj = vj if vj is not a cut vertex in G′ and Sj = Order(G′vj , vj), vj
otherwise. This is the same as Order(G′, v0).

Instead, if the sum is less than |V (G′)|, then vi 6= vt. In Line 9 the outer
while-loop condition evaluates to TRUE. Since v′ = vi and B is the root block,
when the algorithm executes Line 10, v′ will be updated to vi+1, the successor
of vi in the root block. By the maximality of i and using similar arguments as
earlier, we can show that until v′ gets assigned the value vt in Line 10, from
each vertex the algorithm proceed to encounter its Hamiltonian successor in
the current block. When vt is encountered in Line 10 and then reach Line 12,



5.10. Conclusion 109

the condition of the inner while-loop will evaluate to FALSE because vt is not
a cut vertex. Similarly, the condition in Line 22 will also evaluate to FALSE.
In Line 24, completed(vt) is set to TRUE and completedCount becomes t +
1 + ∑

1≤j≤i,vj is a cut vertex (|V (G′vj)| − 1), which is equal to |V (G′)|. When the
algorithm executes Line 9, the outer while-loop condition evaluates to FALSE
and the algorithm terminates. From the beginning of execution, the order
in which the algorithm has encountered vertices is v0, S1, . . . , Svt , where for
1 ≤ j ≤ i, Sj = vj if vj is not a cut vertex in G′ and Sj = Order(G′vj , vj), vj
otherwise. This order is the same as Order(G′, v0).

In all cases, from the beginning of execution of Algorithm 4 till it termi-
nates, the order in which the algorithm encounters the vertices of G′ is given
by Order(G′, v0).

5.10 Conclusion
In this chapter, we have described a O(n log n) time algorithm to add edges
to a given connected outerplanar graph G of pathwidth p to get a 2-vertex-
connected outerplanar graph G′′ of pathwidth at most 16p + 15. We also get
the corresponding path decomposition of G′′ in O(n log n) time. Our technique
is to produce a nice path decomposition of G and make use of the properties
of this decomposition, while adding the new edges. Biedl [14] obtained an
algorithm for computing planar straight line drawings of a 2-vertex-connected
outerplanar graph G on a grid of height O(p). In conjunction with our algo-
rithm, Biedl’s algorithm will work for any outer planar graph G. As explained
by Biedl [14], this gives a constant factor approximation algorithm to get a
planar drawing of G of minimum height.
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Chapter 6

Matchings in TD-Delaunay
graphs - Equilateral triangle
matchings

Given a point set P and a class C of geometric objects, GC(P )
is a geometric graph with vertex set P such that any two vertices
p and q are adjacent if and only if there is some C ∈ C containing
both p and q but no other points from P . In this chapter1 we
study G5(P ) graphs where 5 is the class of downward equilateral
triangles (i.e. equilateral triangles with one of their sides parallel
to the x-axis and the corner opposite to this side below the side
parallel to the x-axis). For point sets in general position, these
graphs have been shown to be equivalent to half-Θ6 graphs and
TD-Delaunay graphs.

The main result in this chapter is that for point sets P in general
position, G5(P ) always contains a matching of size at least

⌈
|P |−1

3

⌉
and this bound is tight. We also give some structural properties of
GC(P ) graphs, where C is the class which contains both upward
and downward equilateral triangles. We show that for point sets in
general position, the block cut point graph of GC(P ) is simply a
path. Through the equivalence of GC(P ) graphs with Θ6 graphs,
we also derive that any Θ6 graph can have at most 5n− 11 edges,
for point sets in general position.

1Joint work with Ahmad Biniaz, Anil Maheshwari and Michiel Smid. This work has been
accepted for publication in Theoretical Computer Science.
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Edges of G4(P )

Edges of G5(P )
Edges of G5(P )

(a) (b)

Figure 6.1: A point set P and its (a) G5(P ) and (b) GC(P ).

6.1 Introduction

In this work, we study the structural properties of some special geometric
graphs defined on a set P of n points on the plane. A point set P is said to
be in general position, if the line passing through any two points from P does
not make angles 0◦, 60◦ or 120◦ with the horizontal [15, 76]. We consider only
point sets that are in general position and our results in this chapter assume
this pre-condition.

First we revisit some of the definitions we made in Section 1.3. A down
(resp. up)-triangle is an equilateral triangle with one side parallel to the x-axis
and the corner opposite to this side below (resp. above) the side parallel to
the x-axis, as in 5 (resp. 4). Given a point set P , G5(P ) (resp. G4(P ))
is defined as the graph whose vertex set is P and that has an edge between
any two vertices p and q if and only if there is a down-(resp. up-)triangle
containing both points p and q but no other points from P . We also define
another graph GC(P ) as the graph whose vertex set is P and that has an edge
between any two vertices p and q if and only if there is a down-triangle or an
up-triangle containing both points p and q but no other points from P (See
Figure 6.1). In Section 6.3 we will see that, for any point set P in general
position, its G5(P ) graph is the same as the well known Triangle Distance
Delaunay (TD-Delaunay) graph of P and the half-Θ6 graph of P on so-called
negative cones. Moreover, GC(P ) is the same as the Θ6 graph of P [15, 35].

Given a point set P and a class C of geometric objects, the maximum C-
matching problem is to compute a subclass C ′ of C of maximum cardinality
such that no point from P belongs to more than one element of C ′ and for each
C ∈ C ′, there are exactly two points from P which lie inside C. Dillencourt
[41] proved that every point set admits a perfect circle-matching. Ábrego et al.
[1] studied the isothetic square matching problem. Bereg et al. concentrated
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on matching points using axis-aligned squares and rectangles [11].
A matching in a graph G is a subset M of the edge set of G such that no

two edges in M share a common end-point. A matching is called a maximum
matching if its cardinality is the maximum among all possible matchings in
G. If all vertices of G appear as end-points of some edge in the matching,
then it is called a perfect matching. It is not difficult to see that for a class C
of geometric objects, computing the maximum C-matching of a point set P is
equivalent to computing the maximum matching in the graph GC(P ).

The maximum 4-matching problem, which is the same as the maximum
matching problem on G4(P ), was previously studied by Panahi et al. [76].
It was claimed that, for any point set P of n points in general position, any
maximum matching of G4(P ) (and G5(P )) will match at least

⌊
2n
3

⌋
vertices.

But we found that their proof of Lemma 7, which is very crucial for their result,
has gaps. By a completely different approach, we show that for any point set
P in general position, G5(P ) (and by symmetric arguments, G4(P )) will have
a maximum matching of size at least

⌈
n−1

3

⌉
; i.e, at least 2

(⌈
n−1

3

⌉)
vertices are

matched. We also give examples of point sets, where our bound is tight.
We also prove some structural and geometric properties of the graphs

G5(P ) (and by symmetric arguments, G4(P )) and GC(P ). It will follow
that for point sets in general position, Θ6 graphs can have at most 5n − 11
edges and their block cut point graph is a simple path.

6.2 Notations used in this chapter
Our notations are similar to those used in [15], with some minor modifications
adopted for convenience. A cone is the region in the plane between two rays
that emanate from the same point, its apex. Consider the rays obtained by
a counter-clockwise rotation of the positive x-axis by angles of iπ

3 with i =
1, . . . , 6 around a point p. (See Figure 6.2). Each pair of successive rays, (i−1)π

3
and iπ

3 , defines a cone, denoted by Ai(p), whose apex is p. For i ∈ {1, . . . , 6},
when i is odd, we denote Ai(p) using C i+1

2
(p) and the cone opposite to Ci(p)

using Ci(p). We call Ci(p) a positive cone around p and Ci(p) a negative
cone around p. For each cone Ci(p) (resp. Ci(p)), let `Ci(p) (resp. `Ci(p)) be
its bisector. If p′ ∈ Ci(p), then let ci(p, p′) denote the distance between p

and the orthogonal projection of p′ onto `Ci(p). Similarly, if p′ ∈ Ci(p), then
let ci(p, p′) denote the distance between p and the orthogonal projection of
p′ onto `Ci(p). For 1 ≤ i ≤ 3, let Vi(p) = {p′ ∈ P | p′ ∈ Ci(p), p′ 6= p}
and Vi(p) = {p′ ∈ P | p′ ∈ Ci(p), p′ 6= p}. For any two points p and q, the
smallest down-triangle containing p and q is denoted by 5pq and the smallest
up-triangle containing p and q is denoted by 4pq. If G1 and G2 are graphs on
the same vertex set, G1 ∩ G2 (resp. G1 ∪ G2) denotes the graph on the same
vertex set whose edge set is the intersection (resp. union) of the edge sets of
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G1 and G2.

C1(p)

C2(p)

C3(p)

C3(p)

C1(p)

C2(p)

p

`C1(p)

`C2(p)

`C3(p)

p′

c1(p, p
′)

p1

5pp1

`C1(p)
`C2(p)

`C3(p)

c1(p, p1)

Figure 6.2: Six angles around a point p.

6.3 Preliminaries
In this section, we describe some basic properties of the geometric graphs
described earlier and their equivalence with other geometric graphs which are
well known in the literature.

The class of down-triangles (and up-triangles) admits a shrinkability prop-
erty [1]: each triangle object in this class that contains two points p and q, can
be shrunk such that p and q lie on its boundary. It is also clear that we can
continue the shrinking process—from the edge that does not contain neither p
or q—until at least one of the points, p or q, becomes a triangle vertex and the
other point lies on the edge opposite to this vertex. After this, if we shrink the
triangle further, it cannot contain p and q together. Therefore, for any pair
of points p and q, 5pq (4pq) has one of the points p or q at a vertex of 5pq
(4pq) and the other point lies on the edge opposite to this vertex. In Figure
6.1, triangles are shown after shrinking.

By the shrinkability property, for the 5-matching problem, it is enough
to consider the smallest down-triangle for every pair of points (p, q) from P .
Thus, G5(P ) is equivalent to the graph whose vertex set is P and that has
an edge between any two vertices p and q if and only if 5pq contains no
other points from P . Notice that if 5pq has p as one of its vertices, then
q ∈ C1(p)∪C2(p)∪C3(p). The following two properties are simple, but useful.

Property 6.1. Let p and p′ be two points in the plane. Let i ∈ {1, 2, 3}. The
point p is in the cone Ci(p′) if and only if the point p′ is in the cone Ci(p).
Moreover, if p is in the cone Ci(p′), then ci(p′, p) = ci(p, p′).
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C1(p)

p

`C1(p)

p′

c1(p, p
′)

c1(p
′, p)

C1(p
′)

`C1(p′)

`1

`2

Figure 6.3: Proof of Property 6.1.

Proof. The first part of the claim is obvious. Now, without loss of generality,
assume that i = 1 and p ∈ C1(p′). (See Figure 6.3). Since `C1(p) is the bisector
of C1(p) and `C1(p′) is the bisector of C1(p′), `C1(p) and `C1(p′) are parallel lines.
Hence, c1(p, p′) is the perpendicular distance of p′ to the line `1, which makes
an angle 120◦ with the horizontal and passes though p. Similarly, c1(p′, p) is
the perpendicular distance of p to the line `2, which makes an angle 120◦ with
the horizontal and passes though p′. Hence both c1(p, p′) and c1(p′, p) are equal
to the perpendicular distance between the lines `1 and `2.

Property 6.2. Let P be a point set, p ∈ P and i ∈ {1, 2, 3}. If V i(p) is non-
empty, then, in G5(P ), the vertex p′ corresponding to the point in V i(p) with
the minimum value of ci(p, p′) is the unique neighbor of vertex p in V i(p).

Proof. Assume V i(p) 6= ∅. For any point p′ in V i(p), it is easy to see that
5pp′ contains no points outside the cone Ci(p). Let p′ be the point with the
minimum value of ci(p, p′). The minimality ensures that5pp′ does not contain
any other point other than p and p′ from P . Therefore, p and p′ are neighbors
in G5(P ).

In order to prove uniqueness, consider any point q in P ∩ V i(p) other than
p and p′. It can be seen that 5pq contains the point p′ and therefore, p and q
are not adjacent in G5(P ). Thus p′ is the only neighbor of p in V i(p).

Consider a point set P and let p, q ∈ P be two distinct points. By Prop-
erty 6.1, ∃i ∈ {1, 2, 3} such that p ∈ Ci(q) or q ∈ Ci(p); by the general position
assumption, both conditions cannot hold simultaneously. Since 5pq has ei-
ther p or q as a vertex, Property 6.2 implies that we can construct G5(P )
as follows. For every point p ∈ P , and for each of the three cones, Ci, for
i ∈ {1, 2, 3}, add an edge from p to the point p′ in Vi(p) with the minimum
value of ci(p, p′), if Vi(p) 6= ∅. This definition of G5(P ) is the same as the
definition of the half-Θ6-graph on negative cones (Ci), given by Bonichon et
al. [15]. We can similarly define the graph G5(P ) using the cones Ci instead
of Ci, for i ∈ {1, 2, 3}, and show that it is equivalent to the half-Θ6 graph on
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positive cones (Ci), given by Bonichon et al. [15]. In Bonichon et al. [15],
it was shown that for point sets in general position, the half-Θ6-graph, the
triangular distance-Delaunay graph (TD-Del) [35], which are 2-spanners, and
the geodesic embedding of P , are all equivalent.

The Θk-graphs discovered by Clarkson [37] and Keil [62] in the late 80’s,
are also used as spanners [73]. In these graphs, adjacency is defined as follows:
the space around each point p is decomposed into k > 2 regular cones, each
with apex p, and a point q of a given cone C is linked to p if, from p, the
orthogonal projection of q onto C’s bisector 2 is the nearest point in C. In
Bonichon et al. [15], it was shown that every Θ6-graph is the union of two
half-Θ6-graphs, defined by Ci and Ci cones. In our notation this is same as
the graph G5(P )∪G4(P ), which by definition, is equivalent to GC(P ). Thus,
for a point set in general position, Θ6(P ) = GC(P ).

6.4 Some properties of G5(P )

6.4.1 Planarity
Chew defined [35] TD-Delaunay graph to be a planar graph and its equivalence
with G5(P ) graph implies that G5(P ) is planar. This also follows from the
general result that Delaunay graph of any convex distance function is a planar
graph [17]. For the sake of completeness, we include a direct proof here.

Lemma 6.1. For a point set P , its G5(P ) is a plane graph, where its edges
are straight line segments between the corresponding end-points.

Proof. Whenever there is an edge between p and q in G5(P ), we draw it as a
straight line segment from p to q. Notice that this segment always lies within
5pq. We will show that this gives a planar embedding of G5(P ). Consider

p

q

p′

q′

a

b

Figure 6.4: Intersection of 5pq and 5p′q′ does not lead to crossing of edges
pq and p′q′.

two edges pq and p′q′ of G5(P ). If the interiors of 5pq and 5p′q′ have no
2Sometimes the definition of Θk-graphs allows the orthogonal projection to be made to

any ray in the cone C. But in our definition, we stick to the convention that the orthogonal
projection is made to the bisector of C.
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point in common, the line segments pq and p′q′ can not cross each other.
Suppose the interiors of 5pq and 5p′q′ share some common area. The case
that 5pq ⊆ 5p′q′ (or vice versa) is not possible, because in this case 5p′q′
contains p and q (or 5pq contains p′ and q′), which contradicts its emptiness.
Since 5pq and 5p′q′ have parallel sides, this implies that one corner of 5pq
infiltrates into5p′q′ or vice versa (see Figure 6.4). Thus their boundaries cross
at two distinct points, a and b. Since P ∩5p′q′∩5p′q′ = ∅, the points p and q
must be on that portion of the boundary of 5pq that does not lie inside 5p′q′.
So the line through ab separates pq from p′q′.

Throughout this chapter, we use G5(P ) to represent both the abstract
graph and its planar embedding described in Lemma 6.1. The meaning will
be clear from the context.

6.4.2 Connectivity
In this section, we prove that for a point set P , its G5(P ) is connected. As
stated in the following lemma, between every pair of vertices, there exist a
path with a special structure.

Lemma 6.2. Let P be a point set with p, q ∈ P . Then, in G5(P ), there is a
path between p and q which lies fully in 5pq and hence G5(P ) is connected.

Proof. We will prove this using induction on the rank of the area of 5pq. For
any pair of distinct points p, q ∈ P , if the interior of 5pq does not contain
any point from P , by definition, there is an edge from p to q in G5(P ). By
induction, assume that for pairs of points x, y ∈ P such that the area of 5xy
is less than the area of 5pq, in the graph in G5(P ), there is a path which lies
fully in 5xy between x and y.

If the interior of 5pq does not contain any point from P , there is an edge
from p to q in G5(P ). Otherwise, there is a point x ∈ P which is in the
interior of 5pq. This implies 5px ⊂ 5pq and 5xq ⊂ 5pq. Since the area of
5px and the area of 5xq are both less than the area of 5pq, by the induction
hypothesis, there is a path that lies in 5px between p and x and there is a
path that lies in 5xq between x and q. By concatenating these two paths, we
get a path which lies in 5pq between p and q.

6.4.3 Number of degree-one vertices
In this section, we prove for a point set P , its G5(P ) has at most three vertices
of degree one. This fact is important for our proof of the lower bound of the
cardinality of a maximum matching in G5(P ).

Definition 6.1. Let x be a degree-one vertex in G5(P ) and let p be the
unique neighbor of x. We say that x uses the horizontal line, if x is below the
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horizontal line passing through p and points in P \ {p, x} are all above the
horizontal line passing through p. We say that x uses the 120◦ line, if x lies to
the right of the 120◦ line passing through p and all points in P \ {p, x} lie to
the left of this line. We say that x uses the 60◦ line, if x lies to the left of the
60◦ line passing through p and all points in P \ {p, x} lie to the right of this
line.

Property 6.3. Let x be a degree-one vertex in G5(P ) and let p be the unique
neighbor of x such that x ∈ Vi(p) for i ∈ {1, 2, 3}.

• If x ∈ V1(p), then x uses the 120◦ line.

• If x ∈ V2(p), then x uses the 60◦ line.

• If x ∈ V3(p), then x uses the horizontal line.

Proof. To get a pictorial understanding of the property, the reader may refer
to Figure 6.5. Let us consider the case when x ∈ V1(p). It is clear that x lies to
the right of the 120◦ line passing through p. Consider a point y ∈ P \{p, x}. By
the general position assumption, y cannot lie on the 120◦ line passing through
p. If y lies to the right of the 120◦ line passing through p, since x is already to
the right side of the 120◦ line passing through p, the triangle 5xy will be lying
completely to the right side of the 120◦ line passing through p and therefore
p /∈ 5xy. Hence, by Lemma 6.2, in G5(P ) there is a path between x and y,
which does not pass through p. This contradicts our assumption that p was
the unique neighbor of x. Therefore, any point y ∈ P \ {p, x} should lie to the
left of the 120◦ line passing through p. Hence, x uses the 120◦ line.

When x ∈ V2(p) or x ∈ V3(p), the proofs are similar.

C1(p)C2(p)

C3(p)

C3(p)

C1(p) C2(p)

p

x

x ∈ V1(p), x uses the 120◦ line

C1(p)C2(p)

C3(p)

C3(p)

C1(p)
C2(p)

p
x

x ∈ V2(p), x uses the 60◦ line

C1(p)C2(p)

C3(p)

C3(p)

C1(p) C2(p)

p

x

x ∈ V3(p), x uses the horizontal line

Figure 6.5: Illustration of Property 6.3. The cones around p which are allowed
to have points from P \ {p, x} are marked with Xand the other cones around
p are marked with ×.

Property 6.4. Let x be a degree-one vertex in G5(P ) and let p be the unique
neighbor of x such that x ∈ V i(p) for i ∈ {1, 2, 3}.
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C1(p)C2(p)

C3(p)

C3(p)

C1(p)
C2(p)

p

x

x ∈ V 1(p). x uses the horizontal line

C1(p)C2(p)

C3(p)

C3(p)

C1(p) C2(p)

p

x

and the 120◦ line.

C1(p)C2(p)

C3(p)

C3(p)

C1(p) C2(p)

p

x

and the 60◦ line.and the 60◦ line.

x ∈ V 2(p). x uses the horizontal line x ∈ V 3(p). x uses the 120◦ line

Figure 6.6: Illustration of Property 6.4. The cones around p which are allowed
to have points from P \ {p, x} are marked with Xand the other cones around
p are marked with ×.

• If x ∈ V 1(p), then x uses the horizontal line and the 60◦ line.

• If x ∈ V 2(p), then x uses the horizontal line and the 120◦ line.

• If x ∈ V 3(p), then x uses the 60◦ line and the 120◦ line.

Proof. To get a pictorial understanding of this property, the reader may refer
to Figure 6.6. This property can be proved using similar arguments as in the
proof of Property 6.3. We omit the proof here, to avoid redundancy.

Property 6.5. Let x be a degree-one vertex in G5(P ) and p be the unique
neighbor of x. Let x′ ∈ P \ {x} be another degree-one vertex in G5(P ).

• If x uses the horizontal line, then, x′ cannot use the horizontal line.

• If x uses the 60◦ line, then, x′ cannot use the 60◦ line.

• If x uses the 120◦ line, then, x′ cannot use the 120◦ line.

Proof. We prove only the first part. Proofs of the other parts are similar.
Suppose x uses the horizontal line. By definition, x lies below the horizontal

line passing through p and x′ ∈ P \ {x} lies on or above above this line. This
implies that x lies below the horizontal line through x′. If x′ also uses the
horizontal line, since x ∈ P \ {x′}, by a symmetric argument, we can show
that x′ lies below the horizontal line through x. Since these two conditions are
not simultaneously possible, we can conclude that if x uses the horizontal line,
then x′ cannot use the horizontal line.

Lemma 6.3. For a point set P , its G5(P ) has at most three vertices of degree
one.

Proof. For contradiction, assume that there are four degree-one vertices x1,
x2, x3 and x4 in G5(P ). From Property 6.3 and Property 6.4, we can see
that each xi uses at least one of the three types of reference lines: either the
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horizontal line, or the 60◦ line or the 120◦ line. By pigeonhole principle, at
least two among these four degree-one vertices use the same type of reference
line.

Without loss of generality, assume that x1 and x2 uses the same type of
reference line. If x1 and x2 are adjacent to each other, these two degree-one
vertices will form a connected component in G5(P ), which will contradict the
fact that G5(P ) is connected. Therefore, x1 and x2 are non-adjacent. Hence,
by Property 6.5, x1 and x2 cannot use the same type of reference line.

Therefore, we can conclude that G5(P ) has at most three vertices of degree
one.

6.4.4 Internal triangulation
If all the internal faces of a plane graph are triangles, we call it an internally
triangulated plane graph. In this section, we will prove that for a point set
P , the plane graph G5(P ) is internally triangulated. This property will be
used in Section 6.5 to derive the lower bound for the cardinality of maximum
matchings in G5(P ).

Lemma 6.4. For a point set P , all the internal faces of G5(P ) are triangles.

Proof. Consider an internal face f of G5(P ). We need to show that f is a
triangle. Let p be the vertex with the highest y-coordinate among the vertices
on the boundary of f . Since f is an internal face, p has at least two neighbors
on the boundary of f . Let q and r be the neighbors of p on the boundary of f
such that r is to the right of the line passing through q and making an angle
of 120◦ with the horizontal and any other neighbor of p on the boundary of
f is to the right of the line passing through r and making an angle 120◦ with
the horizontal. Because of the general position assumption, q and r can be
uniquely determined.

We will prove that qr is also an edge on the boundary of f and there is no
point from P in the interior of the triangle whose vertices are p, q and r. This
will imply that the face f is the triangle whose vertices are p, q and r.

We know that q, r ∈ C1(p) ∪ C2(p) ∪ C3(p). By Property 6.2, it cannot
happen that both q, r ∈ Ci(p), for any i ∈ {1, 2}. Other possibilities are shown
in Figure 6.7, where q is assumed to be above r. An analogous argument can
be made when r is above q as well. Since pq and pr are edges in G5(P ), we
know that 5pq ∩ (P \ {p, q}) = ∅ and 5pr ∩ (P \ {p, r}) = ∅.

Notice that, the area bounded by the lines (1) the horizontal line passing
through p, (2) the line passing through q and making an angle of 120◦ with
the horizontal, and (3) the line passing through r and making an angle of 60◦
with the horizontal, will define an equilateral down triangle with p, q and r on
its boundary. Let us denote this triangle by 5pqr.



6.4. Some properties of G5(P ) 121

p

q

r
x

p

q

r

x

p

q

r

x

p

q

r
x

Figure 6.7: Case 1. q ∈ C1(p) and r ∈ C2(p), Case 2. q ∈ C1(p) and r ∈ C3(p),
Case 3. r ∈ C2(p) and q ∈ C3(p), Case 4. q, r ∈ C3(p).

Claim 6.4.1. 5pqr ∩ (P \ {p, q, r}) = ∅ .

Proof. For contradiction, let us assume that there exists a point x ∈ 5pqr ∩
(P \{p, q, r}). Because of the general position assumption, x cannot be on the
boundary of 5pqr. Therefore, 5px does not contain q and r. By Lemma 6.2,
in G5(P ), there exists a path between p and x which lies inside 5px. Let this
path be X = v1v2, . . . , vk = x. Since 5pq∩P \{p, q} = ∅, 5pr∩P \{p, r} = ∅
and q, r /∈ 5px, we know that all vertices in the path X = v1v2, . . . , vk = x lie
inside the region R = (5px \ (5pq ∪5pr)) ∪ {p}.

Let C be the cone with apex p bounded by the rays pq and pr. Observe that
for any point v ∈ R, the line segment pv lies inside the cone C. Since v2 ∈ R
and pv2 is an edge (in the path from p to x), the line segment corresponding
to the edge pv2 lies inside C in G5(P ).

If the point v2 is outside the face f , edge pv2 will cross the boundary of f ,
which is contradicting the planarity of G5(P ). Since v2 cannot be outside the
face f , the edge pv2 belongs to the boundary of f . Since v2 lies inside the cone
C and v2 ∈ R, this means that v2 is a neighbor of p on the boundary of f such
that v2 is to the left of the the line passing through r and making an angle of
120◦ with the horizontal. This is a contradiction to our assumption that q is
the only neighbor of p on the boundary of f , lying to the left of the the line
passing through r and making an angle of 120◦ with the horizontal.

Let us continue with the proof of Lemma 6.4. Since the triangle with
vertices p, q and r is inside the triangle 5pqr, from the above claim, it is clear
that there is no point from P , other than the points p, q and r, inside the
triangle whose vertices are p, q and r. Since the edges pq and pr belong to the
boundary of f , to show that f is a triangle, it is now enough to prove that
qr is also an edge in G5(P ). This fact also follows from the above claim as
explained below.

Since 5qr ⊆ 5pqr, by the claim above, 5qr cannot contain any point
from P other than p, q and r. Moreover, since p lies above q and r, we know
that p /∈ 5qr. Therefore, 5qr ∩ (P \ {q, r}) = ∅. Therefore, qr is an edge in
G5(P ).

Thus, f has to be a triangle bounded by the edges pq, qr and pr.
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Corollary 6.5. For a point set P , all the cut vertices of G5(P ) lie on its
outer face.

Proof. Consider any vertex v of G5(P ) which is not on its outer face. Since
G5(P ) is internally triangulated, each neighbor of v in G5(P ) lies on a cycle in
the graph G5(P )\v. Since G5(P ) is connected, G5(P )\v remains connected.
Thus, v cannot be a cut vertex.

Combining Lemma 6.1, Lemma 6.2, Lemma 6.3 and Lemma 6.4, we get:

Theorem 6.6. For a point set P , G5(P ) is a connected and internally trian-
gulated plane graph, having at most three degree-one vertices.

6.5 Maximum matching in G5(P )
In this section, we show that for any point set P of n points, G5(P ) contains
a matching of size

⌈
n−1

3

⌉
; i.e, at least 2

(⌈
n−1

3

⌉)
vertices are matched. In order

to do this, we will prove the following general statement:

Lemma 6.7. Let G be a connected and internally triangulated plane graph,
having at most three vertices of degree one. Then, G contains a matching of
size at least

⌈
|V (G)|−1

3

⌉
.

An overview of the proof. Let G be a graph on n vertices, satisfying the
assumptions of Lemma 6.7. Since G is a connected graph, the lemma holds
trivially when n ≤ 4. Therefore, we assume that n ≥ 5. We construct an
auxiliary graph G′ such that it is a 2-connected planar graph of minimum
degree at least 3, and then make use of the following theorem of Nishizeki [75]
to get a lower bound on the size of a maximum matching of G′.

Theorem 6.8 ([75]). Let G′ be a connected planar graph with n′ vertices having
minimum degree at least 3 and let M ′ be a maximum matching in G′. Then,

|M ′| ≥


dn′+2

3 e when n′ ≥ 10 and G′ is not 2-connected
dn′+4

3 e when n′ ≥ 14 and G′ is 2-connected
bn′2 c otherwise

Using the above result, we will derive a lower bound on the size of a max-
imum matching of G.

Before getting into the proof of Lemma 6.7, it is worth mentioning that
getting a weaker lower bound of n3 −O(1) for the size of maximum matching in
G is quite easy. Here we give a quick outline of the proof of this weaker bound,
without getting into its details: Add a new vertex on the outer face of G and
make it adjacent to all vertices which were on the outer face of G. It can be
shown that, since all degree-one vertices and cut vertices of G were on its outer
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face, by this transformation, the resultant graph is a 2-connected planar graph
of minimum degree at least two with at most three degree-two vertices. Until
there are no degree-two vertices left, we do the following: we select a face of
the current graph with a degree-two vertex on its boundary and place a new
vertex on this face, making it adjacent to all other vertices those were on that
face. It is easy to show that, after each step of this transformation, the new
graph is also a 2-connected planar graph of minimum degree at least two and
its number of degree-two vertices strictly lesser than that was before. Finally,
we get a 2-connected planar graph G′ of minimum degree at least three, on
at least n′ = n + 1 vertices, which has a maximum matching M ′ of size given
by Theorem 6.8. To get a maximum matching M of G, we just need to delete
edges in M ′ incident at any of the the newly added vertices of G′. Since we
need to delete at most four (since the number of newly added vertices is at
most four) edges from M ′ to get M , it is easy to show that |M | ≥ n

3 −O(1).
Now, our effort is to make the lower bound of |M | as close to n

3 as possible.
For this, we follow a slightly different method, which is described below.

Pre-processing. Let the degree-one vertices of G be denoted by p0, p1, . . .,
pk−1. By our assumption, k ≤ 3. If k = 3, and for each 0 ≤ i ≤ 2 the
unique neighbor of pi is a degree two vertex in G, we do some pre-processing
to convert it into a graph in which this condition does not hold. To understand
this pre-processing easily, the reader may refer to Figure 6.8. Let P be the
path (p0 = v1, v2, . . . , v2t) of maximum length in G such that P contains an
even number of vertices and v2, . . . , v2t are of degree two in G. We have t ≥ 1.
Let v2t+1 be the neighbor of v2t, other than v2t−1 in G. Let H be the plane
graph obtained from the plane graph G, by deleting the vertices v1, v2, . . . , v2t,
along with their incident edges. It is clear that P has a unique maximum
matching of size t and a maximum matching of G can be obtained by taking
the union of a maximum matching in H and the maximum matching in P .

Since k = 3 and G is connected, it is easy to see that the vertex v2t+1 is
not a degree-one vertex in G. Since the degree of v2t+1 in H is one less than
its degree in G, the degree of v2t+1 is at least one in H. By the maximality of
P , we can conclude that one of the following is true. If v2t+1 is a degree-one
vertex in H, then, the unique neighbor of v2t+1 has degree at least 3 in H (as
in Figure 6.8(a)). If v2t+1 has degree greater than one in H, then, H has at
most two degree-one vertices, p1 and p2 (as in Figure 6.8(b)).

The properties of the path P ensures that H is connected. Since all the
removed vertices v1, . . . , v2t were of degree less than three, they were all on
the outer face of the internally triangulated graph G. Therefore, H remains
internally triangulated as well.

When at least one of the degree-one vertices of G has a neighbor of degree
greater than two or when k ≤ 2 we initialize H = G.
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(a) (b)
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Figure 6.8: Pre-processing step constructing H from G. In both the cases
above, the path P=(v1, v2, . . . , v4). The union of a maximum matching in H
and the matching {(v1, v2), v3, v4)} in P gives a maximum matching of G. (a)
In G, the vertex v5 is of degree two. It becomes a degree-one vertex in H and
its neighbor has degree at least three in H. (b) In G, the vertex v5 has degree
greater than two. H has only two vertices of degree one.

From the construction of H, we can make the following observation.

Property 6.6. H is a connected and internally triangulated plane graph. H has
at most three degree-one vertices. If H has three degree-one vertices, then, one
of the degree-one vertices has a neighbor of degree at least three. If MH is a
maximum matching in H, then, G has a matching of size |MH |+ t, where t is
an integer given by |V (G)|−|V (H)|

2 .

Construction of the auxiliary graph G′. Now we describe the construc-
tion of a supergraph G′ of H such that G′ will satisfy the assumptions of
Theorem 6.8; i.e. we want G′ to be a bi-connected planar graph of minimum
degree at least 3. Our construction will also ensure that there exist either a sin-
gle vertex v or two vertices u and v in G′, such that every edge in E(G′)\E(H)
has one of its end points at u or v. Since a matching M ′ of G′ can have at
most one edge incident at each of u and v, this implies that H has a matching
of size at least M ′ − 2.

We initialize G′ to be the same as H. Let the degree-one vertices of H be
denoted by q0, q1, . . . , qh−1. If H has no degree-one vertices, we consider h to
be zero. By Property 6.6, we have h ≤ 3. If h = 0 or 1, the modification of
G′ is simple. We insert a new vertex x in the outer face of G′ and add edges
between x and all other vertices which were already on the outer face of G′
(i.e, add edges between the new vertex x and vertices which were on the outer
face of H). This transformation maintains planarity. All vertices in G′ except
the vertex q0 (present only when h = 1) have degree at least three now. If
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h = 1, the degree of q0 has become two in G′ at this stage. In this case, let
f be a face of the current graph G′, containing both q0 and x. Modify G′

by inserting a new vertex y inside f and adding edges from this new vertex
to all other vertices belonging to f . As earlier, this transformation maintains
planarity. Now, the degree of q0 becomes 3 and thus G′ achieves minimum
degree 3. Notice that, when h = 0 every edge in E(G′) \ E(H) is incident at
x and when h = 1 every edge in E(G′) \ E(H) is incident at x or y.

If h = 2 or h = 3, consider a simple closed curve C in the plane such
that (1) the entire graph H (all its vertices and edges) lies inside the bounded
region enclosed by C, (2) the vertices of H which lie on C are precisely the
degree-one vertices of H, (3) except for the end points, every edge of H lies
in the interior of the bounded region enclosed by C. The region of the outer
face of H, bounded by the curve C, can be divided into h regions R0, . . . , Rh−1,
where Ri is the region bounded by the edge at qi, the edge at q(i+1) mod h and
the boundary of the outer face of H and the curve C. (Here onwards, in this
subsection we assume that indices of vertices and regions are taken modulo h).
Notice that every vertex on the outer-face of H lies on at least one of these
regions and qi lies on the regions Ri and Ri−1, for 0 ≤ i ≤ h− 1.

When h = 2, we insert two new vertices x, y into G′. (See Figure 6.9(a)).
Three types of new edges are added in G′: (1) between x and y (2) between the
vertex x and all the vertices of H which lie on the region R0 and (3) between
y and all the vertices of H which lie on the region R1. This transformation
maintains planarity. (We can imagine x and y to be points on the boundary of
the regionsR0 andR1 respectively, but distinct from any point on the boundary
of the outer face of H. Edges between the new vertex x and old vertices on R0

can be drawn inside R0 and edges between y and the old vertices on R1 can
be drawn inside R1. The edges among the new vertices x and y can be drawn
outside these regions, except at their end points). Both of the vertices q0 and
q1 lie in both the regions R0 and R1. Therefore, q0 and q1 becomes adjacent
to both x and y in G′ and hence degrees of vertices q0, q1, x, y are all at least
3 in G′. Since H was an internally triangulated planar graph, all the degree
two vertices of H were on the outer face of H. Therefore, each of them gets
at least one new neighbor (x or y) in G′. Therefore, minimum degree of G′ is
at least 3. In this case also, every edge in E(G′) \ E(H) is incident at x or y.
When h = 3, Property 6.6 ensures that the neighbor of one of the degree-one
vertices of H has degree at least 3. Without loss of generality, assume that
the neighbor of q0 has degree at least 3 in H. In this case, we insert one new
vertex x into G′. (See Figure 6.9(b)). Three types of new edges are added in
G′: (1) between x and q0 (2) between q0 and all the other vertices of H (except
the unique neighbor of q0) which were on the regions R0 and R2 (3) between
x and all the vertices of H which were on the region R1. This transformation
also maintains planarity. (We can imagine x to be a point on the boundary of
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Figure 6.9: (a) Modification done when H has two degree-one vertices. Every
edge in E(G′) \E(H) is incident at x or y. (b) Modification done when H has
three degree-one vertices. Every edge in E(G′) \ E(H) is incident at q0 or x.

the region R1, but distinct from any point on the boundary of the outer face of
H. Edges between q0 and the other vertices on R0 can be drawn inside R0 and
edges between q0 and the other vertices on R2 can be drawn inside R2. Edges
between x and the other vertices on R1 can be drawn inside R1. The edges
among the new vertices x and q0 can be drawn outside these regions, except at
their end points). Vertices q1 and q2 become adjacent to both q0 and x in G′.
Therefore, degrees of q0, q1, q2 are at least 3. In addition, q0 is also adjacent
to x. Therefore, degree of x is also at least three in G′. Suppose vertex v was
the (unique) neighbor of q0 in H. By Property 6.6, v has degree at least three
in H and hence also in G′. All degree two vertices of H, which belonged to R0

or R2 were non-adjacent to q0 in H; but are adjacent to q0 in G′. Thus, they
attain degree at least 3 in G′. All degree two vertices of H, which belonged to
R2 gets a new neighbor x in G′ and attain degree three. Thus, the minimum
degree of G′ is at least 3 in this case as well. Every edge in E(G′) \ E(H) is
incident at x or q0.

From the description above, we can make the following observation.
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Property 6.7. G′ is a planar graph of minimum degree at least three, with
|V (H)| + 1 ≤ |V (G′)| ≤ |V (H)| + 2. There exist either a single vertex u or
two vertices u and v in G′, such that every edge in E(G′) \ E(H) has one of
its end points at u or v.

Claim 6.8.1. The graph G′ is 2-connected.

Proof. In all the different cases above, it is easy to observe that none of the
newly inserted vertices can be a cut vertex of G′.

Consider an arbitrary vertex v ∈ V (H). If v is not a cut vertex of H, then,
H \ v is connected. Since G′ has minimum degree at least 3, any newly added
vertex has a neighbor in V (H)\{v} in the graph G′. Therefore, G′ \v remains
connected. Therefore, none of the non-cut vertices of H can be a cut vertex
of G′. In particular, none of the degree-one vertices of H can be a cut vertex
of G′.

If v is a cut vertex in H, v was on the outer face of H, because H was
internally triangulated. It is clear that if two vertices v1, v2 ∈ V (H) are in the
same connected component ofH\v, they are in the same connected component
of G′ \ v as well. If C1 and C2 are two components of H \ v, then we know
that there are vertices v1 ∈ V (C1) and v2 ∈ V (C2), such that v1 and v2 are
neighbors of v on the outer face of H.

When h ≤ 2, vertices v1 and v2 have an edge to at least one of the newly
inserted vertices in G′. Since the induced subgraph of G′ on the newly inserted
vertices is connected, in G′ we get a path from v1 to v2 in which all the
intermediate vertices are newly inserted vertices in G′. When h = 3, we have
two cases to consider. It is possible that v1 or v2 is same as the vertex q0

itself. If this is not the case, v1 and v2 have edges to either q0 or the new
vertex x in G′. In either case, since there is an edge between q0 and x in G′,
we get a path from v1 to v2 in G′ \ v. Thus, in all cases when h ≥ 3, any two
components C1 and C2 of H \v become part of the same connected component
of G′ \ v. Moreover, by the construction of G′, the degree-one vertices of H
and the vertices in V (G′) \ V (H) are part of the same component of G′ \ v.
This implies that G′ \ v has only a single connected component and hence, v
is not a cut vertex of G′.

Thus, G′ is 2-connected.

A lower bound for the cardinality of a maximum matching in G. By
Property 6.7 and Claim 6.8.1, the auxiliary graph G′ is a 2-connected planar
graph of minimum degree at least 3. Let n′ = |V (H)| + t1 be the number of
vertices of G′, where t1 = 1 or t1 = 2 by Property 6.7. By Theorem 6.8, the
cardinality of a maximum matching M ′ in G′ is at least

⌈
n′+4

3

⌉
when n′ ≥ 14

and |M ′| ≥ bn′2 c, otherwise. Since H is a subgraph of G′, if we delete the edges
inM ′ which belong to E(G′)\E(H), we get a matchingMH of H. SinceM ′ is
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a matching in G′, M ′ can have at most one edge incident at any vertex of G′.
Hence, by Property 6.7, there can be at most two edges inM ′∩(E(G′)\E(H)).
Therefore, we have |MH | ≥ |M ′| − 2. From this, we get,

|MH | ≥


⌈
|V (H)|+t1+4

3

⌉
− 2, when |V (H)|+ t1 ≥ 14

⌊
|V (H)|+t1

2

⌋
− 2, otherwise

By Property 6.6, G has a matching M of size |MH |+ t, where t is an integer,
given by |V (G)|−|V (H)|

2 . By substituting the lower bound for |MH |, we get,

|M | ≥


⌈
|V (H)|+t1+4

3

⌉
− 2 + t, when |V (H)|+ t1 ≥ 14

⌊
|V (H)|+t1

2

⌋
− 2 + t, otherwise

Since t1 = 1 or 2 and t = |V (G)| − |V (H)| ≥ 0, this gives

|M | ≥


⌈
|V (G)|−1

3

⌉
, when |V (H)| ≥ 13

⌊
|V (G)|−3

2

⌋
, otherwise

Whenever |V (G)| ≥ 7, from the above inequality, we get |M | ≥
⌈
|V (G)|−1

3

⌉
≥ 2.

Since G has at most three vertices of degree one, when |V (G)| ≥ 5, G cannot
be a star with |V (G)|−1 leaves. Therefore, when |V (G)| ≥ 5, |M | ≥ 2. When
|V (G)| > 1, since G is connected, we get |M | ≥ 1. From this discussion, we
can conclude that, in all cases, |M | ≥

⌈
|V (G)|−1

3

⌉
. This concludes the proof of

Lemma 6.7.
As an immediate corollary of Lemma 6.7 and Theorem 6.6, we get:

Theorem 6.9. For any point set P of n points in general position, G5(P )
contains a matching of size

⌈
n−1

3

⌉
.

Some graphs for which our bound is tight. In Figure 6.10 (a), a point
set P consisting of 15 points and the corresponding graph G5(P ) is given. This
graph has a maximum matching (shown in thick lines) of size

⌈
|P |−1

3

⌉
= 5. This

is the same example as given by Panahi et al. [76]. By adding more triplets of
points (ai, bi, ci), i > 4, into P , following the same pattern, we can show that
for any n ≥ 15 which is a multiple of 3, there is a point set P of n points in
general position, such that a maximum matching in G5(P ) is of cardinality⌈
|P |−1

3

⌉
. We can also show that, for any n ≥ 13, which is one more than a

multiple of three, there is a point set P ′ on n points in general position, such
that a maximum matching in G5(P ′) is of cardinality

⌈
|P ′|−1

3

⌉
. For example,

take the point set P ′ = P \{a0, b0} where P is the point set of triplets described
in the paragraph above. Figure 6.10 (b) illustrates this for n = 13, in which
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c0(667, 278)

c1(665, 396)

c2(667, 527)

c3(665, 683)

c4(662, 846)

a1(611, 410)
b1(711, 428)

a2(598, 550)
b2(723, 563)

a3(586, 699)
b3(726, 709)

a4(572, 881)
b4(750, 894)

b0(705, 308)a0(628, 297) c0(667, 278)

c1(665, 396)

c2(667, 527)

c3(665, 683)

c4(662, 846)

a1(611, 410)
b1(711, 428)

a2(598, 550)
b2(723, 563)

a3(586, 699)
b3(726, 709)

a4(572, 881)
b4(750, 894)

(a) (b)

Figure 6.10: (a) A point set P with 15 points in general position, where G5(P )
has a maximum matching of size

⌈
n−1

3

⌉
= 5 [76]. (b) A point set P with 13

points in general position, where G5(P ) has a maximum matching of size⌈
n−1

3

⌉
= 4.

case a maximum matching in G5(P ′) has cardinality
⌈
|P ′|−1

3

⌉
= 4. Similarly,

for any n ≥ 14, which is two more than a multiple of three, there is a point set
P ′ on n points in general position, such that a maximum matching in G5(P ′)
is of cardinality

⌈
|P ′|−1

3

⌉
. For example, take the point set P ′ = P \ {a0} where

P is the point set of triplets described in the paragraph above. From the
examples above, it is clear that the bound given in Theorem 6.9 is tight.

6.5.1 A 3-connected down triangle graph without per-
fect matching

The example given by Panahi et al. [76], for a point set P for which G5(P ) has
a maximum matching of size

⌈
n−1

3

⌉
, contained many cut vertices. However, for

general planar graphs, we get a better lower bound for the size of a maximum
matching, when the connectivity of the graph increases. By Theorem 6.8, we
know that any 3-connected planar graph on n vertices has a matching of size⌈
n+4

3

⌉
, if n ≥ 14 and has a matching of size

⌊
n
2

⌋
if n < 14 or it is 4-connected.

Hence, it was interesting to see whether there exist a point set P in general
position, with an even number of points, such that G5(P ) is 3-connected
but does not contain a perfect matching. The answer is positive. Consider
the graph given in Figure 6.11 (a), which shows a point set P of 18 points
in general position and the corresponding graph G5(P ). This graph has a
maximum matching (shown in thick lines) of size 8. We can follow the pattern
and go on adding points ai, bi and ci, for i > 4 to the point set such that when
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a0 b0

c0

a1 b1c1

a2 b2c2

a3 b3
c3

a4 b4

c4

c0

a1 b1c1

a2 b2c2

a3 b3
c3

a4 b4

c4

p2
(1143.33, 240.911)

p3(661.507, 1100.74)

(a) (b)

(150.403, 252.89)

p3(661.507, 1100.74)

p2

(1143.33, 240.911)
p1

(150.403, 252.89)

p1

Figure 6.11: (a) A point set P with 18 points in general position, where G5(P )
is 3-connected and has a maximum matching of size

⌈
n+5

3

⌉
. (b) A point set P

with 16 points in general position, where G5(P ) is 3-connected and has a max-
imum matching of size

⌈
n+5

3

⌉
. The points with their co-ordinates unspecified

have the same co-ordinates as in Figure 6.10.

P = {a0, b0, c0, . . . , ak, bk, ck, p1, p2, p3}, G5(P ) is a 3-connected graph with
a maximum matching of size

⌈
|P |+5

3

⌉
. It can be verified that G5(P \ {a0})

and G5(P \{a0, b0}) are also 3-connected and their maximum matchings have
size

⌈
|P |+5

3

⌉
. (See Figure 6.11 (b) for the case when |P | = 16). Thus, for 3-

connected down triangle graphs corresponding to point sets in general position,
the best known lower bound for maximum matching is

⌈
n+4

3

⌉
and the examples

we discussed above show that it is not possible to improve the bound above⌈
n+5

3

⌉
.

6.6 Some properties of GC(P )
In this section, we prove that for a point set P , the 2-connectivity structure of
GC(P ) is simple and GC(P ) can have at most 5n− 11 edges.

6.6.1 Block cut point graph
Let G(V,E) be a graph. A block of G is a maximal connected subgraph having
no cut vertex. The block cut point graph of G is a bipartite graph B(G) whose
vertices are cut-vertices of G and blocks of G, with a cut-vertex x adjacent to
a block X if x is a vertex of block X. The block cut point graph of G gives
information about the 2-connectivity structure of G.

Since GC(P ) is the union of two connected graphs G5(P ) and G4(P )
(Lemma 6.2), it is connected and hence its block-cut point graph is a tree [40].
We will show that the block cut point graph of GC(P ) is a simple path. We
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use the following lemma in our proof.

Lemma 6.10. Let P be a point set and p ∈ P be a cut vertex of GC(P ).
Then, there exists an i ∈ {1, 2, 3} such that Vi(p) 6= ∅, Vi(p) 6= ∅ and for all
j ∈ {1, 2, 3} \ {i}, Vj(p) = ∅ and Vj(p) = ∅. Moreover, GC(P ) \ p has exactly
two connected components, one containing all vertices in Vi(p) and the other
containing all vertices of Vi(p).

Proof. Since p is a cut vertex of GC(P ), we know that there exist v1, v2 ∈ P
that are in different components of GC(P ) \ p. We will show that v1 and v2

should be in opposite cones with reference to the apex point p.
Without loss of generality, assume that v1 ∈ A1(p) ∩ P \ {p}. If v2 ∈

(A1(p) ∪ A2(p) ∪ A6(p)) ∩ (P \ {p}), then, p /∈ 5v1v2 and hence by Lemma
6.2, there is a path in G5(P ) between v1 and v2 that does not pass through
p, which is not possible. Similarly, if v2 ∈ (A3(p) ∪ A5(p)) ∩ (P \ {p}), then,
p /∈ 4v1v2 and there is a path in G4(P ) between v1 and v2 that does not pass
through p, which is not possible. Therefore, v2 ∈ A4(p), the cone which is
opposite to A1(p) which contains v1. Thus any two points v1 and v2 which are
in different connected components of GC(P ) \ p, are in opposite cones around
p.

Let C1 and C2 be two connected components of GC(P ) \ p with v1 ∈ C1

and v2 ∈ C2. Without loss of generality, assume that such v1 ∈ V1(p) and
v2 ∈ V1(p). From the paragraph above, we know that every vertex of GC(P )\p
which is not in C1 is in V1(p) and every vertex of GC(P ) \ p which is not in
C2 is in V1(p). This implies that for all j ∈ {2, 3}, Vj(p) = ∅ and Vj(p) = ∅.
This proves the first part of our lemma.

For any v1, v2 ∈ Vi(p), we have p /∈ 5v1v2 and hence by Lemma 6.2, there
is a path in G5(P ) between v1 and v2 that does not pass through p. Similarly,
for any v1, v2 ∈ Vi(p), p /∈ 4v1v2 and there is a path in G4(P ) between v1 and
v2 that does not pass through p. Therefore, there are exactly two connected
components in GC(P ) \ p, one containing all vertices in Vi(p) and the other
containing all vertices of Vi(p).

Theorem 6.11. Let P be a point set in general position and let k be the number
of blocks of GC(P ). Then, the blocks of GC(P ) can be arranged linearly as
B1, B2, . . . Bk such that, for i > j, Bi ∩ Bj contains a single (cut) vertex pi
when j = i + 1 and Bi ∩ Bj is an empty graph otherwise. That is, the block
cut point graph of GC(P ) is a path.

Proof. If GC(P ) is two-connected, there is only a single block and the lemma
is trivially true.

Since GC(P ) is a connected graph, its block cut point graph is a tree. Any
two blocks can have at most one vertex in common and the common vertex
is a cut vertex. From Lemma 6.10, we also know that three or more blocks
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cannot share a common (cut) vertex. If a block Bi of GC(P ) is such that, in
the block cut point graph of GC(P ), the node corresponding to block Bi is
a leaf node, Bi is adjacent to only one another block and they share a single
(cut) vertex.

If the node corresponding to Bi is not a leaf node of the block cut point
graph, we know that Bi shares (distinct) common vertices with at least two
other blocks Bi′ and Bi′′ . Therefore, two vertices in Bi are cut vertices of
GC(P ). Let v1, v2 be these cut vertices. We will show that there cannot be a
third such cut vertex in Bi.

By Lemma 6.10, we know that GC(P )\v1 has exactly two components and
since Bi is 2-connected initially, all vertices of Bi except v1 are in the same
connected component of GC(P ) \ v1. By Lemma 6.10, all vertices of Bi lie in
the same (designated) cone with apex v1. Without loss of generality, assume
that all vertices in Bi \ v1 are in V1(v1). In particular, v2 ∈ V1(v1) and hence
v1 ∈ V1(v2). Similarly, since v2 is a cut vertex, all vertices of Bi lie in the
same (designated) cone with apex v2. Since v1 ∈ V1(v2), all vertices in Bi \ v2

are in V1(v2). If v3 is a vertex in Bi, distinct from v1 and v2, then from the
discussion above, we get v3 ∈ V1(v1) and v3 ∈ V1(v2). Hence v1 ∈ V1(v3) and
v2 ∈ V1(v3). Suppose v3 is a cut vertex in GC(P ). Since v1 and v2 are in the
same connected component of GC(P )\v3, it is a contradiction to Lemma 6.10,
that v1 ∈ V1(v3) and v2 ∈ V1(v3).

Thus, if the node corresponding to Bi is not a leaf node of the block cut
point graph of GC(P ), then exactly two vertices in Bi are cut vertices of
GC(P ). Since no three blocks can share a common vertex by Lemma 6.10, we
are done.

6.6.2 Number of Edges of GC(P )
Since G5(P ) and G4(P ) are planar graphs and GC(P ) = G5(P ) ∪ G4(P ),
using Euler’s theorem, it is obvious that GC(P ) has at most 2 × (3n − 6) =
6n− 12 edges, where n = |P | [40]. In this section, we show that for any point
set P , its GC(P ) has a spanning tree of a special structure, which will imply
that GC(P ) can have at most 5n− 11 edges.

Lemma 6.12. For a point set P , the intersection of G5(P ) and G4(P ) is a
connected graph.

Proof. We will prove this algorithmically. At any point of execution of this
algorithm, we maintain a partition of P into two sets S and P \S such that the
induced subgraph of G5(P )∩G4(P ) on S is connected. When the algorithm
terminates, we will have S = P , which will prove the lemma.

We start by adding any arbitrary point p1 ∈ P to S. The induced subgraph
of G5(P ) ∩G4(P ) on S is trivially connected now.
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At any intermediate step of the algorithm, let S = {p1, p2, . . . , pk} 6= P ,
such that the invariant is true. We will show that we can add a point pk+1

from P \ S into S, and still maintain the invariant.
For any point p ∈ S, let

d1(p) = min
i∈{1,2,3},p′∈Vi(p)∩P\S

ci(p, p′)

d2(p) = min
i∈{1,2,3},p′∈Vi(p)∩P\S

ci(p, p′)

and
d(p) = min(d1(p), d2(p))

Since |P \ S| ≥ 1, d(p) <∞. Let d = min
p∈S

d(p).
Consider p ∈ S such that d(p) = d. By definition of d, such a point

exists. Consider the area enclosed by the hexagon around p which is defined

by Hp =
3⋃
i=1
{p′ ∈ Ci(p) | ci(p, p′) ≤ d} ∪

3⋃
i=1
{p′ ∈ Ci(p) | ci(p, p′) ≤ d}. (See

Figure 6.12 (a)). We know that there exists a point q ∈ P \ S such that q is
on the boundary of Hp. We claim that pq is an edge in G5(P ) ∩G4(P ).

p

q

d

d

d

p

q

d

d

d

d

d

d

(a) (b)

Figure 6.12: (a) Closest point to p. (b) Hexagons around closest pairs.

Let Hq =
3⋃
i=1
{p′ ∈ Ci(q) | ci(q, p′) ≤ d} ∪

3⋃
i=1
{p′ ∈ Ci(q) | ci(q, p′) ≤ d},

which is a hexagonal area around q. (See Figure 6.12 (b)). Without loss of
generality, assume that q ∈ C1(p). Note that, by Property 6.1, c1(p, q) =
c1(q, p) = d and hence, 5pq ∪4pq ⊆ Hp ∩Hq.

If there exists a point q′ ∈ (P \ {q}) \ S such that q′ lies in the interior of
Hp, then d(p) < d, which is a contradiction. Similarly, if there exists a point
p′ ∈ (P \ {p})∩S such that p′ lies in the interior of Hq, then d(p) < d. This is
also a contradiction. Therefore, Hp∩Hq∩(P \{p, q}) = ∅. Since, 5pq∪4pq ⊆
Hp ∩Hq, this implies that 5pq ∩ (P \ {p, q}) = ∅ and 4pq ∩ (P \ {p, q}) = ∅.
This implies that pq is an edge in G5(P ) as well as in G4(P ).

Since pq is an edge in G5(P ) ∩G4(P ), we can add pk+1 = q to the set S,
thus increasing the cardinality of S by one, and still maintaining the invariant
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that the induced subgraph of G5(P ) ∩ G4(P ) on S is connected. Since we
can keep on doing this until S = P , we conclude that G5(P ) ∩ G4(P ) is
connected.

Theorem 6.13. For a set P of n points in general position, GC(P ) has at
most 5n− 11 edges and hence its average degree is less than 10.

Proof. Since G5(P ) and G4(P ) are both planar graphs we know that each of
them can have at most 3n − 6 edges. From Lemma 6.12, we know that the
intersection of G5(P ) and G4(P ) contains a spanning tree and hence they
have at least n− 1 edges in common. From this, we conclude that the number
of edges in GC(P ) = G5(P )∪G4(P ) is at most (3n−6)+(3n−6)− (n−1) =
5n− 11. Hence,the average degree of GC(P ) is less than 10.

Corollary 6.14. For a set P of n points in general position, its Θ6 graph has
at most 5n− 11 edges.

It is still an open problem to decide whether the upper bound on the
number of edges, stated in Theorem 6.13 and Corollary 6.14, is tight. Here
we give an example showing that this upper bound cannot be improved below(
4 + 1

3

)
n−13. In Figure 6.13, a point set P of 18 points and the corresponding

GC(P ) graph is shown. This graph has 65 edges. By varying the number of
triplets of points (ai, bi, ci), i ≥ 0, in P , following the same pattern, we can
show that for any n ≥ 6 which is a multiple of 3, there is a point set P of n
points in general position, such that GC(P ) has exactly

(
4 + 1

3

)
n− 13 edges.

6.7 Conclusion
We have shown that for any set P of n points in general position, any maximum
5 (resp. 4) matching of P will match at least 2

(⌈
|P |−1

3

⌉)
points. This also

implies that any half-Θ6 graph (or equivalently TD - Delaunay graph) for point
sets in general position has a matching of size at least

⌈
|P |−1

3

⌉
. We have also

given examples for which this bound is tight. This is in contrast with the
case of classical Delaunay graphs, where the size of the maximum matching is
always

⌊
|P |
2

⌋
, for non-degenerate point sets. We also proved that when P is in

general position, the block cut point graph of its Θ6 graph is a simple path
and that the Θ6 graph has at most 5n− 11 edges. It is an interesting question
to see whether for every point set in general position, its Θ6 graph contains a
matching of size

⌊
|P |
2

⌋
. So far, we were not able to get any counter examples

for this claim and hence we conjecture the following.

Conjecture 6.15. For every set of n points in general position, its Θ6 graph
contains a matching of size

⌊
n
2

⌋
.
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a0 b0

c0

a1 b1
c1

a2 b2

c2

a3 b3

c3

a4 b4

c4

p3

p2p1

Edges of G4(P ) \G5(P )

Edges of G5(P ) \G4(P )

Edges of G4(P ) ∩G5(P )

Figure 6.13: A point set P of n = 18 points and the corresponding GC(P )
graph with

(
4 + 1

3

)
n− 13 = 65 edges.
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Chapter 7

Heterochromatic paths in edge
colored graphs

In this chapter1 we give lower bounds for the length of a max-
imum heterochromatic path in edge colored graphs without small
cycles. We show that if G has no four cycles, then it contains a het-
erochromatic path of length at least ϑ(G)−o(ϑ(G)) and if the girth
of G is at least 4 log2(ϑ(G))+2, then it contains a heterochromatic
path of length at least ϑ(G) − 2, which is only one less than the
bound conjectured by Chen and Li [32] for the general case. Other
special cases considered include lower bounds for the length of a
maximum heterochromatic path in edge colored bipartite graphs
and triangle-free graphs: for triangle-free graphs we obtain a lower
bound of

⌊
5ϑ(G)

6

⌋
and for bipartite graphs we obtain a lower bound

of
⌈

6ϑ(G)−3
7

⌉
.

We also prove that if the coloring is such that G has no het-
erochromatic triangles, then G contains a heterochromatic path
of length at least

⌊
13ϑ(G)

17

⌋
. This improves the previously known⌈

3ϑ(G)
4

⌉
bound obtained by Chen and Li [34]. We also give a rel-

atively shorter and simpler proof showing that any edge colored
graph G contains a heterochromatic path of length at least

⌈
2ϑ(G)

3

⌉
.

7.1 Introduction
An edge coloring of a graph is a mapping from its edge set to the set of natural
numbers. If a graph G has an edge coloring specified, we call G an edge colored
graph. The length of a path P is the number of edges of the path P . Unless
specified otherwise, our graphs are finite simple graphs.

1Joint work with L. Sunil Chandran and Deepak Rajendraprasad. Communicated to
European Journal of Combinatorics.
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Let G(V,E) be an edge colored graph. We use color(e) to denote the color
given to an edge e ∈ E. (To denote the color given to an edge (u, v) ∈ E,
we abuse the above notation and write color(u, v).) A heterochromatic or a
rainbow subgraph in G is a subgraph H of G such that for every pair of distinct
edges e1 and e2 of H, we have color(e1) 6= color(e2).

The conditions for the existence of large heterochromatic subgraphs in edge
colored graphs are well studied in literature [59, 51, 58, 63]. Erdos et al.[44],
Hahn et al. [59] and Albert et al. [8] gave some sufficient conditions on
the coloring to guarantee a heterochromatic Hamiltonian cycle in an edge
colored complete graph Kn. The conditions for the existence of heterochro-
matic Hamiltonian paths in infinite complete graphs were studied by Hahn
and Thomassen [59] and later by Erdos and Tuza [45].

The number of distinct colors occurring at edges incident at a vertex v of G
is called the color degree of v and is denoted by degc(v). We use ϑ(G) to denote
the minimum color degree of G, i.e., ϑ(G) = minv∈V (G) deg

c(v). Broersma et
al. [19] obtained lower bounds for the length of a maximum heterochromatic
path in an edge colored graph, in terms of its minimum color degree and
minimum neighborhood union conditions. We use λ(G) to denote the length
of a maximum length heterochromatic path in G. They showed that for every
vertex v of G, there exists a heterochromatic path starting at v and of length
at least

⌈
ϑ(G)+1

2

⌉
. They also showed that if for every pair of vertices x and y

of G, the cardinality of the union of the colors given to edges incident with x
and y is at least s, then λ(G) ≥

⌈
s
3

⌉
+ 1.

Chen and Li [32] reported A. Saito’s conjecture that λ(G) ≥
⌈

2ϑ(G)
3

⌉
for any

edge colored graph G. They showed that λ(G) ≥ ϑ(G) − 1, if 3 ≤ ϑ(G) ≤ 7,
and λ(G) ≥

⌈
3ϑ(G)

5

⌉
+ 1, if ϑ(G) ≥ 8. It is easy to see that if ϑ(G) = 1 or

2, then λ(G) ≥ ϑ(G). In the same paper, they conjectured that the actual
bound could be ϑ(G)− 1 and demonstrated some examples which achieve this
bound. Recently, Das et al. [39] gave a simpler and shorter proof showing that
λ(G) ≥

⌈
3ϑ(G)

5

⌉
for any edge colored graph G.

In an unpublished manuscript from Chen and Li [31], it was shown that if
ϑ(G) ≥ 8, then λ(G) ≥

⌈
2ϑ(G)

3

⌉
+1. Further, in another work [33], they showed

that if for every pair of vertices x and y of G, the cardinality of the union of
the colors given to edges incident with x and y is at least s, then λ(G) ≥

⌈
s+1

2

⌉
.

This was an improvement over the result of Broersma et al. [19]. Later, they
[34] also showed that, if the coloring is such that G has no heterochromatic
triangles, then λ(G) ≥

⌈
3ϑ(G)

4

⌉
.

The results in this chapter include the following.

• We give a shorter and simpler proof (compared to those in [32, 31, 39])
showing that for any edge colored graph G, λ(G) ≥

⌈
2ϑ(G)

3

⌉
.

• If G is an edge-colored triangle-free graph, then λ(G) ≥
⌊

5ϑ(G)
6

⌋
.
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• If G is edge colored and is bipartite, then λ(G) ≥
⌈

6ϑ(G)−3
7

⌉
.

• If G is an edge colored graph without cycles of length four, then λ(G) is
ϑ(G)− o(ϑ(G)).

• If G is an edge colored graph without cycles of length less than g, with

g ≥ 5, then λ(G) ≥
⌈
(ϑ(G)− 1)− ϑ(G)

g

d g4e(g−2)

⌉
. Note that, when

g = 4 log2(ϑ(G)) + 2, this lower bound reaches ϑ− 2. Thus, in the case
of graphs without small cycles, our lower bound is only one less than the
ϑ(G)− 1 lower bound conjectured by Chen and Li [32].

• When the girth of G is less than 9, we use some other methods and
obtain better lower bounds for λ(G), compared to the general bound
stated above.

• If the coloring is such that G has no heterochromatic triangles, then
λ(G) ≥

⌊
13ϑ(G)

17

⌋
. This is an improvement over the bound obtained by

Chen and Li [34].

7.2 A bound for the length of maximum het-
erochromatic paths

As we mentioned in the introduction, in an unpublished manuscript, Chen
and Li reported to prove that if ϑ = ϑ(G) ≥ 8, then λ(G) ≥

⌈
2ϑ
3

⌉
+ 1. In this

section, we give a shorter and simpler proof showing that for any edge colored
graph G, λ(G) ≥

⌈
2ϑ
3

⌉
. The ideas used in this proof are refinements of the

ideas used for obtaining the
⌈

3ϑ
5

⌉
bound in Das et al. [39]; but we are able to

achieve a much stronger result.
If H is a subgraph of G, we use C(H) to denote the colors that appear on

edges belonging to the subgraph H. For a vertex v ∈ V (G), N(v) denotes the
set of neighbors of v in G. For a subset S ⊆ V (G), let N(S) = ⋃

v∈S N(v).

Lemma 7.1. Let G be an edge colored graph and let P be a maximum length
heterochromatic path in G. Suppose x is an endpoint of P . If x has a neighbor
v such that color(x, v) /∈ C(P ), then v ∈ V (P ).

Proof. Suppose P is given by x = u0, u1, . . . , ut = y. If x has a neighbor
v /∈ V (P ) such that color(x, v) /∈ C(P ), then v, u0, u1, . . . , ut will be a hete-
rochromatic path in G which is longer than P , which is a contradiction.

In the remaining parts of this chapter, we repeatedly use the definitions
given below.
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Definition 7.1. Let P be a maximum length heterochromatic path in G. Let
P be of length t and be given by x = u0, u1, . . . , ut = y. Recall the definition
of C(P ) we made at the beginning of this section. We call the colors in C(P )
as old colors and other colors as new colors. We define

• OLD/∈y = {c ∈ C(P ) | no edge incident at y has color c}.

• OLDy→P = {c ∈ C(P ) | y has a neighbor ui ∈ V (P ) such that
color(y, ui) = c}.

• OLDy9P = C(P ) \ (OLD/∈y ∪ OLDy→P ). Clearly, if c ∈ OLDy9P , then
y has a neighbor z /∈ V (P ) such that color(y, z) = c.

• NEWy→P = {c ∈ C(G) \ C(P ) | y has a neighbor of ui ∈ V (P ) such
that color(y, ui) = c}.

Note that OLD/∈y
⊎
OLDy→P

⊎
OLDy9P = C(P ) and the cardinality of this

set is t, because P is heterochromatic.

Lemma 7.2. Let P be a maximum length heterochromatic path in an edge
colored graph G. Suppose P is of length t and y is an endpoint of P . Let
COLORy→P = {color(y, ui) | ui ∈ N(y) ∩ V (P )}. Then, |COLORy→P | is at
least ϑ−t+|OLD/∈y|+|OLDy→P |. Consequently, the total number of neighbors
of y in P , |N(y) ∩ V (P )| ≥ ϑ− t+ |OLD/∈y|+ |OLDy→P |.

Proof. Clearly, |COLORy→P | = |NEWy→P | + |OLDy→P |. By Lemma 7.1, if
an edge (y, v) is of a new color, v ∈ V (P ). This implies that |NEWy→P | ≥
ϑ− t+ |OLD/∈y|, because y has at least ϑ(G) colors incident on it and there are
only t−|OLD/∈y| old colors among them. Therefore, we have |COLORy→P | =
|NEWy→P | + |OLDy→P | ≥ ϑ − t + |OLD/∈y| + |OLDy→P | and the statement
of the lemma follows.

Definition 7.2. Let P be a maximum length heterochromatic path in G and
be given by x = u0, u1, . . . , ut = y. We define TP (x) = {ui ∈ N(x) ∩ V (P ) |
color(x, ui) /∈ C(P )} and MP (x) = {ui | ui is the predecessor of a vertex in
TP (x) in the path P from x to y}.

The following observation directly follows from Definition 7.2, by Lemma 7.1.

Lemma 7.3. Let P be a maximum length heterochromatic path in G and be
given by x = u0, u1, . . . , ut = y. Then, |MP (x)| = |TP (x)| ≥ ϑ− t.

Lemma 7.4. Let P be a maximum length heterochromatic path in G and be
given by x = u0, u1, . . . , ut = y. Suppose ui ∈ MP (x). Then color(ui, ui+1)
belongs to OLD/∈y

⊎
OLDy→P .
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Proof. Suppose color(ui, ui+1) /∈ OLD/∈y
⊎
OLDy→P . Then, by Definition 7.1,

color(ui, ui+1) ∈ OLDy9P and y has a neighbor z /∈ V (P ) such that color(y, z)
= color(ui, ui+1). Then, the path ui, ui−1, . . . , u0 = x, ui+1, . . . , ut = y, z is a
heterochromatic path in G longer than P , a contradiction.

Lemma 7.5. Let P be a maximum length heterochromatic path in G. Let P be
of length t and x and y be the endpoints of P . Then, |N(x)∩V (P )| ≥ 2(ϑ− t)
and |N(y) ∩ V (P )| ≥ 2(ϑ− t).

Proof. By Lemma 7.3 and Lemma 7.4, |OLD/∈y
⊎
OLDy→P | ≥ |MP (x)| ≥ ϑ−t.

Therefore, by Lemma 7.2, |N(y)∩V (P )| ≥ 2(ϑ−t). By symmetric arguments,
we can prove that |N(x) ∩ V (P )| ≥ 2(ϑ− t).

Theorem 7.6. For any edge colored graph G, there exists a heterochromatic
path of length at least

⌈
2ϑ
3

⌉
in G.

Proof. Let P be a maximum heterochromatic path inG. Suppose P is of length
t and y is an endpoint of P . Then, by Lemma 7.5, |N(y) ∩ V (P )| ≥ 2(ϑ− t).
Since t ≥ |N(y) ∩ V (P )|, we get t ≥ 2(ϑ− t). From this, the statement of the
theorem follows.

7.3 Maximum heterochromatic paths in edge
colored graphs without short cycles

In this section we obtain lower bounds for the length of a maximum hete-
rochromatic path in an edge colored graph without short cycles. Special cases
considered include triangle free graphs, bipartite graphs and graphs without
four cycles. The important result in this section is a lower bound for λ(G) as
a function of the girth of G and ϑ. As the girth increases, our lower bound
becomes closer and closer to ϑ− 2, which is just one less than the bound con-
jectured by Chen et al. [32]. We extend the ideas developed in the previous
section before proceeding further.

Lemma 7.7. Let P be a maximum length heterochromatic path in G and be
given by x = u0, u1, . . . , ut = y. Then, each ui ∈ MP (x) is the end point
of a maximum heterochromatic path Pi in G, such that V (Pi) = V (P ) and
C(Pi) = C(P ) ∪ {color(x, ui+1)} \ {color(ui, ui+1)}.

Proof. Let ui ∈MP (x). By the definition of MP (x), ui+1 ∈ N(x) and
color(x, ui+1) /∈ C(P ). Note that i > 0, because color(x, u1) ∈ C(P ). The
path ui, ui−1, . . . , u0 = x, ui+1, . . . , ut is a heterochromatic path in G and the
lemma follows.
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Definition 7.3. Let P be a maximum length heterochromatic path in G and
be given by x = u0, u1, . . . , ut = y. For each ui ∈ MP (x), we define χi =
C(P ) ∪ {color(x, ui+1)}. Corresponding to each ui ∈ MP (x), we also define
Pi = ui, ui−1, . . . , u0 = x, ui+1, . . . , ut, which is the maximum heterochromatic
path given by the proof of Lemma 7.7. The path Pi has ui and y as its
endpoints, V (Pi) = V (P ) and C(Pi) = χi \ {color(ui, ui+1)}.

The following lemma is a direct consequence of Lemma 7.5 and Lemma 7.7.

Lemma 7.8. Let P be a maximum length heterochromatic path in G and be
given by x = u0, u1, . . . , ut = y. Then, for each ui ∈MP (x), |N(ui)∩V (P )| ≥
2(ϑ− t).

Lemma 7.9. Let P be a maximum length heterochromatic path in G and be
given by x = u0, u1, . . . , ut = y. For each ui ∈ MP (x), the set {color(ui, uj) |
uj ∈ N(ui) ∩ V (P )} \ χi has cardinality at least ϑ− t− 1. All edges incident
at ui with colors from this set have their other end point in V (P ).

Proof. Let Pi be the maximum length heterochromatic path inG with ui as one
of its end points, as given by Definition 7.3. By Lemma 7.1, all edges incident
at ui with colors from the set {color(ui, v) | v ∈ N(ui)}\C(Pi) have their other
end point in V (Pi), which is the same as V (P ) by the definition of Pi. This
proves the second part of the lemma, because χi = C(Pi) ∪ {color(ui, ui+1)},
by the definition of Pi.

By Lemma 7.1, we have {color(ui, v) | v ∈ N(ui)}\C(Pi) = {color(ui, uj) |
uj ∈ N(ui) ∩ V (P )} \ C(Pi). From this, we can conclude that the set
{color(ui, uj) | uj ∈ N(ui)∩ V (P )} \C(Pi) has cardinality at least ϑ− t, since
the color degree of ui is at least ϑ and |C(Pi)| = t. The first part of the lemma
follows, because χi = C(Pi) ∪ {color(ui, ui+1)} by the definition of Pi.

Let P be a maximum length heterochromatic path in G and be given by
x = u0, u1, . . . , ut = y. Since t ≥ |N(y) ∩ V (P )|, in order to find a lower
bound for t, it is enough to lower bound |N(y) ∩ V (P )|. We can do this by
applying Lemma 7.2, if we can get a good lower bound for |OLD/∈y

⊎
OLDy→P |.

In Lemma 7.4, we saw that for each ui ∈ MP (x), color(ui, ui+1) belongs to
OLD/∈y

⊎
OLDy→P . This observation was the crux of the proof of Theorem 7.6.

Now, extending this idea, we would like to identify as many edges (uj, uj+1) of
P as we can, such that color(uj, uj+1) belongs to OLD/∈y

⊎
OLDy→P .

Recalling Definition 7.3, we know that corresponding to each ui ∈ MP (x)
the path Pi = ui, ui−1, . . . , u0 = x, ui+1, . . . , ut is a maximum heterochromatic
path in G with ut = y as one of its endpoints. Since all edges in Pi except the
edge (x, ui+1) were also part of P , in order to identify more edges of P whose
color contributes to the set OLD/∈y

⊎
OLDy→P , a strategy would be to apply

Lemma 7.4 to the path Pi for each ui ∈ MP (x), taking care to discard the
contribution due to the edge (x, ui+1), since this edge was not in P .
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Recall that MP (x) = {predecessor of uj in P | uj ∈ N(x) ∩ V (P ) and
color(x, uj) /∈ C(P )}. Observe that while applying Lemma 7.4 to the path P ,
the edges whose colors contributed to the set OLD/∈y

⊎
OLDy→P were from

{(uj−1, uj) | uj ∈ N(x) ∩ V (P ) and color(x, uj) /∈ C(P )}: here uj−1 was the
predecessor of uj in P . Intuitively, we can apply Lemma 7.4 to Pi for each
ui ∈MP (x). and the edges of Pi we are now interested in would belong to the
set {(pred(uj), uj) | uj ∈ N(ui)∩V (Pi) and color(ui, uj) /∈ C(Pi)}\{(x, ui+1)},
where pred(uj) is the predecessor of uj in the path Pi from ui to y. Since
V (Pi) = V (P ) and χi = C(Pi) ∪ {color(ui, ui+1)}, this means that we would
be interested in the edges of Pi belonging to the set {(pred(uj), uj) | uj ∈
N(ui) ∩ V (P )& color(ui, uj) /∈ χi}. Note that if uj ∈ N(ui) ∩ V (P ) such
that 0 ≤ j < i, then pred(uj) = uj+1 and if uj ∈ N(ui) ∩ V (P ) such that
j > i + 1, then pred(uj) = uj−1. Therefore, the edges of interest belong
to the set {(uj+1, uj) | uj ∈ N(ui) ∩ V (P ) such thatj < i and color(ui, uj) /∈
χi}∩{(uj−1, uj) | uj ∈ N(ui)∩V (P ) such that j > i+1 and color(ui, uj) /∈ χi}.
This motivates the following definition.

Definition 7.4. Let P be a maximum length heterochromatic path in G and
be given by x = u0, u1, . . . , ut = y. For each ui ∈ MP (x), we define Ψ(ui) =
{uj | uj ∈ N(ui) ∩ V (P ) such thatj < i and color(ui, uj) /∈ χi} ∪ {uj | uj+1 ∈
N(ui) ∩ V (P ) such that j > i and color(ui, uj+1) /∈ χi}.

The following lemma is an integral part of the remaining proofs presented
in this chapter.

Lemma 7.10. Let P be a maximum length heterochromatic path in G and
be given by x = u0, u1, . . . , ut = y. Suppose ui ∈ MP (x). Then |Ψ(ui)| ≥
ϑ − t − 1 and ui /∈ Ψ(ui). If uj ∈ Ψ(ui), then color(uj, uj+1) belongs to
OLD/∈y

⊎
OLDy→P .

Proof. Note that color(ui, ui+1) ∈ χi and therefore, {color(ui, uj) | uj ∈
N(ui) ∩ V (P )} \ χi = {color(ui, uj) | uj ∈ N(ui) ∩ V (P ) such thatj < i

and color(ui, uj) /∈ χi} ∪ {color(ui, uj) | uj ∈ N(ui)∩ V (P ) such that j > i+ 1
and color(ui, uj) /∈ χi}. Now, the first part of this lemma follows from the
definition of Ψ(ui), using Lemma 7.9. To prove the second part, assume that
uj ∈ Ψ(ui). By the first part of this lemma we know that i 6= j.

Let Pi = ui, ui−1, . . . , u0 = x, ui+1, . . . , ut = y be the maximum length het-
erochromatic path in G with ui and y as its end points, given by Definition 7.3.
Since i 6= j, the edge (uj, uj+1) belongs to both Pi and P . Therefore, we have
color(uj, uj+1) ∈ C(Pi) ∩ C(P ).

For contradiction, assume that color(uj, uj+1) /∈ OLD/∈y
⊎
OLDy→P . By

Definition 7.1, this implies color(uj, uj+1) ∈ OLDy9P and y has a neighbor
z /∈ V (P ) such that color(y, z) = color(uj, uj+1). Since uj ∈ Ψ(ui), one of the
following cases should occur by the definition of Ψ(ui):
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• Case 1: uj ∈ N(ui) ∩ V (P ) such thatj < i and color(ui, uj) /∈ χi.

Since χi ⊃ C(Pi), we get color(ui, uj) /∈ C(Pi). In this case uj ∈ TPi(ui)
and its predecessor in Pi is the vertex uj+1 and therefore uj+1 ∈MPi(ui).
We apply Lemma 7.7 to the path Pi, with ui taking the role of x, and
uj+1 taking the role of ui to get the following observation: uj+1 is an end
point of a maximum heterochromatic path P ′ in G, such that V (P ′) =
V (Pi) = V (P ) and C(P ′) = C(Pi) ∪ {color(ui, uj)} \ {color(uj+1, uj)}.
But, we noted that y has a neighbor z /∈ V (P ) such that color(y, z) =
color(uj, uj+1), which contradicts Lemma 7.1 applied to P ′.

• Case 2: uj+1 ∈ N(ui) ∩ V (P ) such that j > i and color(ui, uj+1) /∈ χi.

Since χi ⊃ C(Pi), we have color(ui, uj+1) /∈ C(Pi). In this case uj+1 ∈
TPi(ui) and its predecessor in Pi is the vertex uj and therefore uj ∈
MPi(ui). We apply Lemma 7.7 to the path Pi, with ui taking the role of x
and uj taking the role of ui, to get the following observation: uj is an end
point of a maximum heterochromatic path P ′′ in G, such that V (P ′′) =
V (Pi) = V (P ) and C(P ′′) = C(Pi)∪{color(ui, uj+1)}\ {color(uj, uj+1)}.
But we noted that y has a neighbor z /∈ V (P ) such that color(y, z) =
color(uj, uj+1), which contradicts Lemma 7.1 applied to P ′′.

Therefore, color(uj, uj+1) ∈ OLD/∈y
⊎
OLDy→P .

Theorem 7.11. If G is an edge colored graph which is triangle free, then the
length of the maximum heterochromatic path in G is at least

⌊
5ϑ
6

⌋
.

Proof. First we note that Lemma 7.5 can be used to derive a weaker bound
of
⌈

4ϑ−1
5

⌉
. Let P be a maximum length heterochromatic path in G and be

given by x = u0, u1, . . . , ut = y. By Lemma 7.5, x has at least 2(ϑ − t)
neighbors in V (P ). If G is triangle free, ui and ui+1 cannot be simultaneously
in N(y). Therefore, |N(y)∩ V (P )| ≤ t+1

2 . Thus 2(ϑ− t) ≤ t+1
2 , which implies,

t ≥
⌈

4ϑ−1
5

⌉
.

We derive a better bound by using Lemma 7.2, Lemma 7.4 and Lemma 7.10.
By the arguments in the previous paragraph, |N(y) ∩ V (P )| ≤ t+1

2 . Since
|N(y)∩ V (P )| is at least ϑ− t+ |OLD/∈y|+ |OLDy→P | by Lemma 7.2, we get,
ϑ − t + |OLD/∈y| + |OLDy→P | ≤ t+1

2 . From this, we can make the following
observation.

Observation 7.1. ϑ+ |OLD/∈y|+ |OLDy→P | ≤ 3t+1
2 .

From this observation, it is enough to get a lower bound for |OLD/∈y| +
|OLDy→P | in order to derive a lower bound for t. The observation below,
follows from Lemma 7.4 and Lemma 7.10.

Observation 7.2. For any ui ∈ MP (x), |OLD/∈y
⊎
OLDy→P | ≥ |MP (x) ∪

Ψ(ui)|.
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Our approach is to show the existence of a ui ∈MP (x) such that |Ψ(ui) ∪
MP (x)| is sufficiently large and then use Observation 7.2 to lower bound
|OLD/∈y

⊎
OLDy→P |. By Lemma 7.3, |MP (x)| ≥ ϑ − t. Let M ′

P (x) be an
arbitrary subset of MP (x) such that |M ′

P (x)| = ϑ − t. Let l = max{k | uk ∈
M ′

P (x)}. We will show that, if M ′
P (x)∩N(ul) = ∅, then taking ui = ul suffices

and if M ′
P (x) ∩ N(ul) 6= ∅, taking either ui = ul or ui = ul′ suffices, where

l′ = max{k | uk ∈M ′
P (x) ∩N(ul)}.

• Case 1: M ′
P (x) ∩N(ul) = ∅.

By the definition of Ψ, if uj ∈ Ψ(ul) for some j < l, then uj ∈ N(ul)
and by our assumption, uj /∈ M ′

P (x). By the maximality of l, if uj ∈
Ψ(ul) for some j > l, then uj /∈ M ′

P (x). Moreover, by Lemma 7.10,
ul /∈ Ψ(ul). Therefore, M ′

P (x) ∩ Ψ(ul) = ∅. This implies that |M ′
P (x) ∪

Ψ(ul)| = |M ′
P (x)| + |Ψ(ul)| ≥ ϑ − t + ϑ − t − 1, by Lemma 7.10. Thus,

we have |M ′
P (x) ∪ Ψ(ul)| ≥ 2(ϑ − t) − 1 and since MP (x) ⊇ M ′

P (x),
we get |MP (x) ∪ Ψ(ui)| ≥ 2(ϑ − t) − 1. Therefore, by Observation 7.2,
|OLD/∈y

⊎
OLDy→P | ≥ 2(ϑ− t)− 1. By Observation 7.1, we get 3t+1

2 ≥
ϑ+ 2(ϑ− t)− 1 and therefore, t ≥

⌈
6ϑ−3

7

⌉
≥
⌊

6ϑ
7

⌋
.

• Case 2: M ′
P (x) ∩ N(ul) 6= ∅. Let l′ = max{k | uk ∈ M ′

P (x) ∩ N(ul)}.
Clearly, l′ < l and ul and ul′ are both in M ′

P (x) and they are adjacent
to each other.

Since G is triangle free, ul and ul′ have no common neighbors. From this,
it follows that there is no uj ∈ Ψ(ul)∩Ψ(ul′), with j < l′ and there is no
uj ∈ Ψ(ul) ∩ Ψ(ul′), with j > l. Moreover, ul /∈ Ψ(ul) and ul′ /∈ Ψ(ul′),
by Lemma 7.10. If there is a uj ∈ Ψ(ul) ∩ Ψ(ul′), with l′ < j < l, then
uj ∈ N(ul) by the definition of Ψ(ul) and therefore by the maximality of
l′, it follows that uj /∈M ′

P (x). Therefore, Ψ(ul) ∩Ψ(ul′) ∩M ′
P (x) = ∅.

Moreover, since ul, ul′ are neighbors of each other, ul+1 /∈ N(ul′) and
since l > l′ it follows that ul /∈ ψ(ul′). We also have ul /∈ Ψ(ul), by
Lemma 7.10. From these observations,
|Ψ(ul)\M ′

P (x)|+|Ψ(ul′)\M ′
P (x)| = |Ψ(ul)|+|Ψ(ul′)|−(|Ψ(ul)∩M ′

P (x)|+
|Ψ(ul′) ∩M ′

P (x)|)
≥ |Ψ(ul)| + |Ψ(ul′)| − (|M ′

P (x)| − 1), since Ψ(ul) ∩ Ψ(ul′) ∩M ′
P (x) = ∅

and ul ∈M ′
P (x) \ (Ψ(ul) ∪Ψ(ul′)).

≥ (ϑ− t− 1) + (ϑ− t− 1)− (ϑ− t− 1), by Lemma 7.10.
≥ ϑ− t− 1.

This implies that either |Ψ(ul′) \M ′
P (x)| ≥

⌈
ϑ−t−1

2

⌉
or |Ψ(ul) \M ′

P (x)| ≥⌈
ϑ−t−1

2

⌉
. Since |M ′

P (x)| = ϑ−t, we get either |M ′
P (x)∪Ψ(ul)| ≥

⌈
3(ϑ−t)−1

2

⌉
or |M ′

P (x) ∪ Ψ(ul′)| ≥
⌈

3(ϑ−t)−1
2

⌉
. Since MP (x) ⊇ M ′

P (x), this implies
that we have either |MP (x) ∪ Ψ(ul)| ≥

⌈
3(ϑ−t)−1

2

⌉
or |MP (x) ∪ Ψ(ul′)| ≥
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⌈
3(ϑ−t)−1

2

⌉
.

This gives |OLD/∈y
⊎
OLDy→P | ≥

⌈
3(ϑ−t)−1

2

⌉
by Observation 7.2. By

Observation 7.1, we get 3t+1
2 ≥ ϑ+

⌈
3(ϑ−t)−1

2

⌉
and therefore, t ≥

⌈
5ϑ−2

6

⌉
≤⌊

5ϑ
6

⌋
.

Theorem 7.12. If G is edge colored and is bipartite, then λ(G) ≥
⌈

6ϑ−3
7

⌉
.

Proof. Let P be a maximum length heterochromatic path in G and be given
by x = u0, u1, . . . , ut = y. By Lemma 7.3, |MP (x)| ≥ ϑ− t. Let M ′

P (x) be an
arbitrary subset of MP (x) such that |M ′

P (x)| = ϑ − t. Let l = max{k | uk ∈
M ′

P (x)}.
If two vertices in M ′

P (x) are adjacent, it will create either a three cycle
or a five cycle in G, which is not possible, since G is bipartite. Therefore,
M ′

P (x) ∩N(ul) = ∅, where l = max{k | uk ∈ M ′
P (x)} and from Case 1 of the

proof of Theorem 7.11, the statement follows.

Now we turn our attention to the case of graphs without cycles of length 4.

Theorem 7.13. Let G be an edge colored graph without cycles of length 4.
Then λ(G) ≥ ϑ−

√
2ϑ
3 .

Proof. Let P be a maximum length heterochromatic path in G and be given by
x = u0, u1, . . . , ut = y. To prove the theorem, we will first show that |V (P )| ≥
(ϑ−t)+3(ϑ−t)2

2 . By Lemma 7.3 and Lemma 7.8, we know that |MP (x)| ≥ ϑ − t
and for each v ∈MP (x), |N(v)∩V (P )| ≥ 2(ϑ− t). Suppose M ′

P (x) is a subset
of MP (x) where M ′

P (x) = {v1, v2, . . . , vk}, with k = ϑ− t. Since G has no four
cycles, for v, w ∈MP (x), |N(v) ∩N(w)| ≤ 1.

Since V (P ) ⊇ ⋃v∈M ′P (x) N(v) ∩ V (P ) = V (P )∩[N(v1)⊎(N(v2)\N(v1))⊎ · · ·⊎
(N(vk)\ (N(v1)∪N(v2)∪ · · ·N(vk−1)))], using the observation from the above
paragraph we have |V (P )| ≥ 2(ϑ−t)+2(ϑ−t)−1+· · ·+2(ϑ−t)−(k−1). Since
k = ϑ− t, this gives |V (P )| ≥ (ϑ−t)+3(ϑ−t)2

2 . This implies t+ 1 ≥ (ϑ−t)+3(ϑ−t)2

2 .
It is easy to verify that if t < ϑ−

√
2ϑ
3 , this leads to a contradiction. Therefore,

t ≥ ϑ−
√

2ϑ
3 .

If the girth of G is at least 7, we can slightly improve the bound given by
Theorem 7.13.

Theorem 7.14. Let G be an edge colored graph of girth at least 7. Then
λ(G) > ϑ−

√
ϑ
2 .
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Proof. Let P be a maximum length heterochromatic path in G and be given
by x = u0, u1, . . . , ut = y. To prove the theorem, we will first show that
|V (P )| ≥ 1 + 2(ϑ− t) + 2(ϑ− t)2. Since G has girth is at least 7, we can make
the following observations:

• Each ui ∈MP (x) has exactly one neighbor in N(x), which is ui+1. There-
fore, |(N(ui) \N(x)) ∩ V (P )| ≥ 2(ϑ− t)− 1, by Lemma 7.8.

• N(x) ∩MP (x) = ∅.

• No two vertices in MP (x) can be adjacent.

• N(MP (x)) ∩ {x} ∪MP (x) = ∅. This follows from the second and third
observations above.

• For ui, uj ∈ MP (x), with i 6= j, N(ui) ∩ N(uj) = ∅. This gives,
|(N(MP (x)) \ N(x)) ∩ V (P )| ≥ (ϑ − t)[2(ϑ − t) − 1], by Lemma 7.3
and the first observation above.

From the facts listed above, V (P ) ⊇ {x}⊎[N(x)∩V (P )]⊎MP (x)⊎[(N(MP (x))
\N(x))∩V (P )]. Therefore, by Lemma 7.5 and Lemma 7.3 and the last obser-
vation above, we get |V (P )| ≥ 1 + 2(ϑ − t) + (ϑ − t) + (ϑ − t)[2(ϑ − t) − 1].
On simplification this gives, t + 1 = |V (P )| ≥ 1 + 2(ϑ − t) + 2(ϑ − t)2. It is
easy to verify that if t ≤ ϑ −

√
ϑ
2 , this leads to a contradiction. Therefore,

t > ϑ−
√

ϑ
2 .

We will be using the following result by Alon et al. [9], in order to derive
lower bounds for λ(G) in terms of the girth of G.

Lemma 7.15 (Alon et al.[9]). Let G be a graph of average degree d and girth
g. Then, G has at least 4

(⌊
d
2

⌋) g−2
2 vertices.

Now, we will obtain a lower bound for the the average degree of the induced
subgraph of G on the vertex set V (P ) and obtain a lower bound for |V (P )|
using Lemma 7.15.

Lemma 7.16. Let G be an edge colored graph. Let P be a maximum length
heterochromatic path in G and P be of length t. If t ≤ ϑ − 1, then the av-
erage degree of the induced subgraph of G on the vertex set V (P ) is at least
2[(ϑ−t+2)(ϑ−t−1)+(t+1)]

t+1 .

Proof. From Lemma 7.3 and Lemma 7.8, it follows that the total degree of
vertices in MP (x) in the induced graph on V (P ) is at least 2(ϑ − t)2. Also,
the degrees of x and y in the induced subgraph on V (P ) are at least 2(ϑ− t)
by Lemma 7.5, which is at least 2 because t ≤ ϑ− 1 by our assumption. Since
x, y /∈ MP (x), and the vertices in V (P ) \ (MP (x) ∪ {x, y}) have degree at
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least two in the induced subgraph, the total degree of vertices in the induced
subgraph on V (P ) is at least 4(ϑ−t)+|MP (x)|2(ϑ−t)+(t+1−|MP (x)|−2)2 =
4(ϑ − t − 1) + 2|MP (x)|(ϑ − t − 1) + 2(t + 1). By lemma 7.3, this is at least
4(ϑ− t− 1) + 2(ϑ− t)(ϑ− t− 1) + 2(t+ 1)) = 2[(ϑ− t− 1)(ϑ− t+ 2) + (t+ 1)].
From this, the lemma follows.

Theorem 7.17. Let G be an edge colored graph of girth at least g. Then
the maximum length heterochromatic path in G has length at least (ϑ − 1) −
(
√
ϑ)(ϑ4 )

1
g−2 .

Proof. Let P be a maximum length heterochromatic path in G and t be the
length of P . If ϑ − t ≤ 1, the lemma follows directly. Therefore, noting that
ϑ− t is an integer, we assume ϑ− t ≥ 2.

LetG′ be the induced subgraph ofG on the vertex set V (P ). By Lemma 7.16,
the average degree d of G′ is at least 2[(ϑ−t+2)(ϑ−t−1)+(t+1)]

t+1 . Then,
⌊
d
2

⌋
≥

(ϑ−t+2)(ϑ−t−1)
t+1 . Since |V (G′)| = t+ 1, by Lemma 7.15, we get

t+ 1 ≥ 4
[

(ϑ−t+2)(ϑ−t−1)
t+1

] g−2
2

⇒ t+ 1 ≥ 4
[

(ϑ−t−1)2

t+1

] g−2
2

⇒ (t+ 1)
g
g−2 ≥ 4

2
g−2 [ϑ− (t+ 1)]2

⇒ (t+ 1)
g

2(g−2) ≥ 4
1
g−2 [ϑ− (t+ 1)]

⇒ (1
4)

1
g−2 (t+ 1)

g
2(g−2) ≥ [ϑ− (t+ 1)]

⇒ ϑ ≤ (t+ 1) + (1
4)

1
g−2 (t+ 1)

g
2(g−2)

If t+ 1 < ϑ− (1
4)

1
g−2ϑ

g
2(g−2) , the above inequality will not be satisfied.

Therefore, t ≥ (ϑ− 1)− (1
4)

1
g−2ϑ

g
2(g−2) = (ϑ− 1)− (

√
ϑ)(ϑ4 )

1
g−2 .

Corollary 7.18. • If the girth of G is at least 5, G has a maximum hete-
rochromatic path of length at least (ϑ− 1)− 0.63ϑ

5
6 .

• If the girth of G is at least 6, G has a maximum heterochromatic path of
length at least (ϑ− 1)− 0.71ϑ

3
4 .

Remark 7.1. The lower bound given by Theorem 7.17 improves as the girth
increases, but it is clear that this bound cannot grow beyond (ϑ − 1) −

√
ϑ.

When the girth is at least 7, the bound given by Theorem 7.14 is better than
the bound given by Theorem 7.17. In the remaining parts of this section, we
will show how to extend the ideas used in the proof of Lemma 7.16, to obtain
a lower bound for |V (P )| much better than the bounds given by Theorem 7.14
and Theorem 7.17, in the case of graphs of larger girth.

The claim below will be useful for us in deriving a better lower bound for
|V (P )|.
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Claim 7.18.1. Suppose G has girth g or more, where g ≥ 5 and let k =
⌊
g−1

4

⌋
.

Let P be a maximum length heterochromatic path in G. Let x and y be the
endpoint of P and t be the length of P . We can define a sequence of subsets of
V (P ) given by M0,M1, . . .Mk, T1, T2, . . . , Tk such that the following properties
are satisfied for each 0 ≤ i ≤ k:

1. If i > 0, there exists a mapping parent : Mi 7→ Ti satisfying (u, parent(u))
∈ E(G) for each u ∈Mi and there exists a mapping parent : Ti 7→Mi−1

satisfying (v, parent(v)) ∈ E(G) for each v ∈ Ti.

2. There exists a path of length 2i from x to u for each u ∈ Mi and there
exists a path of length 2i− 1 from x to v for each v ∈ Ti.

3. The sets M0, T1, M1 . . . , Ti,Mi are pairwise disjoint.

4. |M0| = 1, |M1| ≥ (ϑ − t) and |Ti| ≥ |Mi−1|(ϑ − t − 1). If i ≥ 2,
|Mi| ≥ |Mi−1|(ϑ− t− 1).

5. For every u ∈Mi there exist a maximum heterochromatic path in G with
u and y as its endpoints and its vertex set the same as V (P ). This path
will be denoted by path(u).

6. For every u ∈Mi, |N(u) ∩ V (P )| ≥ 2(ϑ− t).

Proof. We inductively construct the sequence of setsM0,M1, . . .Mk and T1, T2,

. . . , Tk. We start with the definition of M0, M1 and T1.
Define M0 = {x} and T1 = {u ∈ N(x) ∩ V (P ) | color(x, u) /∈ C(P )}. For

each u ∈ T1(x), we define parent(u) = x. DefineM1 = {v | v is the predecessor
of a vertex u ∈ T1(x) in the path P from x to y}. If v ∈M1 is the predecessor
of u ∈ T1(x) in the path P from x to y, we define parent(v) = u.

Recall the definition of TP (x) and MP (x) and note that T1 = TP (x) and
M1 = MP (x). From this observation and the girth condition, it is easy to verify
that at this stage, properties 1 to 3 in Claim 7.18.1 are satisfied by M0, M1

and T1 and by applying Lemma 7.5, Lemma 7.7 and Lemma 7.8, property 4,
property 5 and property 6 in Claim 7.18.1 can also be verified. Assume that
after stage i − 1, the sets M0,M1, . . .Mi−1 and T1, T2, . . . , Ti−1 are already
defined and they satisfy all the properties in Claim 7.18.1. Now we describe
how to construct Ti and Mi.

Note that by the induction hypothesis, for each u ∈Mi−1, path(u) is a max-
imum heterochromatic path in G with u and y as its endpoints and its vertex
set the same as V (P ). Therefore, by applying Definition 7.2 to path(u) we have
Tpath(u)(u) = {v ∈ N(u) ∩ V (P ) | color(u, v) /∈ C(path(u))}. Clearly, for each
v ∈ Tpath(u)(u), (v, u) ∈ E(G). Note that if v ∈ Tpath(u)(u) \ {parent(u)}, then
v /∈ M0

⊎
M1

⊎ · · ·⊎Mi−1
⊎
T1
⊎
T2
⊎ · · ·⊎Ti−1 by the girth condition. Hence

for each v ∈ Tpath(u)(u) \ {parent(u)} there is a path of length 2i − 1 from x
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to v in G, since by the induction hypothesis there is a path of length 2(i− 1)
between x and u ∈Mi−1.

Consider u ∈ Mi−1. Since each vertex in M0
⊎
M1

⊎ · · ·⊎Mi−1
⊎
T1
⊎
T2
⊎

· · ·⊎Ti−1 has a path of length at most 2(i−1) to x by our inductive assumption,
for each v ∈ Tpath(u)(u) \ {parent(u)} the only neighbor of v in the set in
M0

⊎
M1

⊎ · · ·⊎Mi−1
⊎
T1
⊎
T2
⊎ · · ·⊎Ti−1 should be the vertex u, by the girth

condition. We claim that if v ∈ Tpath(u)(u)\{parent(u)}, then v /∈ Tpath(w)(w)\
{parent(w)}, for any w ∈ Mi−1 where w 6= u. Otherwise, v will be adjacent
to two different vertices u and w in Mi−1, a contradiction. Therefore if u,w ∈
Mi−1 and u 6= w, then the sets Tpath(u)(u) \ {parent(u)} and Tpath(w)(w) \
{parent(w)} are disjoint. We define

Ti = ⊎
u∈Mi−1

[
Tpath(u)(u) \ {parent(u)}

]
.

Now we define the mapping parent : Ti 7→Mi−1 as follows:

For each u ∈Mi−1,

define parent(v) = u, for each v ∈ Tpath(u)(u) \ {parent(u)}

Note that the mapping above is well defined by the definition of Ti. From the
above description, it is also clear that for each v ∈ Ti there exists a path of
length 2i− 1 from x to v and (v, parent(v)) ∈ E(G). Now, the girth condition
ensures that Ti is disjoint fromM0

⊎
M1

⊎ · · ·⊎Mi−1
⊎
T1
⊎
T2
⊎ · · ·⊎Ti−1. For

each u ∈ Mi−1, by Lemma 7.3 applied to path(u), |Tpath(u)(u)| ≥ ϑ − t and
therefore, |Tpath(u)(u) \ {parent(u)}| ≥ ϑ − t − 1. This implies that |Ti| ≥
|Mi−1|(ϑ − t − 1). Thus, the sets M0,M1, . . . ,Mi−1, T1, T2, . . . , Ti−1, Ti satisfy
all the required properties in Claim 7.18.1. Now we define Mi.

Define Mi = ⋃
v∈Ti{predecessor of v in path(parent(v))}

If u′ ∈ Mi is the predecessor of v ∈ Ti in path(parent(v)), clearly (u′, v) ∈
E(G). We claim that for each u′ ∈ Mi, there exist a unique v ∈ Ti such that
u′ is the predecessor of v in path(parent(v)). If this claim was not true, v will
have two distinct neighbors in the set Ti, which contradicts the girth condition.
We use the above claim for the following two purposes.

1. We note that |Mi| = |Ti|.

2. We define the mapping parent : Mi 7→ Ti as follows:

If u′ ∈Mi is the predecessor of v ∈ Ti in path(parent(v)), then
define parent(u′) = v.

This mapping is well defined, because of the claim we proved in the
previous paragraph.
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By this definition, for each u′ ∈ Mi we have (u′, parent(u′)) ∈ E(G). We
can see that there exists a path of length 2i from x to u′ for each u′ ∈ Mi,
because there is already a path of length 2i − 1 from x to parent(u′) by the
induction hypothesis and u′ /∈M0

⊎
M1

⊎ · · ·⊎Mi−1
⊎
T1
⊎
T2
⊎ · · ·⊎Ti−1

⊎
Ti,

by the girth condition. The girth condition also ensures thatMi is disjoint from
M0

⊎
M1

⊎ · · ·⊎Mi−1
⊎
T1
⊎
T2
⊎ · · ·⊎Ti. We also get |Mi| ≥ |Mi−1|(ϑ− t−1),

because we have seen that |Mi| = |Ti| and |Ti| ≥ |Mi−1|(ϑ− t− 1). Thus, Mi

satisfies properties 1 to 4 in Claim 7.18.1. It remains to show that Mi will
satisfy properties 5 and 6 also.

Consider u′ ∈ Mi and let v = parent(u′) where v ∈ Ti. Suppose u ∈ Mi−1

is the parent(v). By our definitions, v ∈ Tpath(u)(u) and u′ is the predecessor
of v in path(u). This implies u′ ∈ Mpath(u)(u) and therefore, we can apply
Lemma 7.3 to path(u).

For each u′ ∈Mi we define path(u′) to be the maximum heterochro-
matic path with endpoints u′ and y obtained as per Definition 7.3
by applying Lemma 7.7 to path(u), where u = parent(parent(u′)).

For each u′ ∈ Mi, we have V (path(u′)) = V (P ) by Definition 7.3 and we get
|N(u′) ∩ V (P )| ≥ 2(ϑ − t), by applying Lemma 7.5 to path(u′). This shows
that Mi satisfies properties 5 and 6 in Claim 7.18.1 as well.

Thus, the setsM0,M1, . . .Mi and T1, T2, . . . , Ti satisfy all the required prop-
erties in Claim 7.18.1 and the statement of the claim follows.

By the above claim, |V (P )| ≥ |M0|+ |T1|+ |M1|+ · · ·+ |Tk|+ |Mk|. From
this we can derive a lower bound for the length of P , using property 4 of
Claim 7.18.1. Alternatively, the observations above can be used to derive a
lower bound for the average degree of the induced subgraph of G on V (P ),
which could then be used in Lemma 7.15 to derive a lower bound for the length
of P . We use the latter approach, as it seems to yield a better lower bound.

Lemma 7.19. Let G be an edge colored graph of girth g or more, g ≥ 5. Let
P be a maximum length heterochromatic path in G and P be of length t. If
t ≤ ϑ − 1, the average degree of the induced subgraph of G on the vertex set

V (P ) is at least 2[(ϑ−t−1)d
g
4e+(t+1)]

t+1 .

Proof. Assume that G has girth g or more, where g ≥ 5 and P is given by
x = u0, u1, . . . , ut = y. Also assume that t ≤ ϑ−1. Let d(P ) denote the average
degree of the induced subgraph of G on the vertex set V (P ) and Γ(P ) denote
the total degree of the induced subgraph of G on the vertex set V (P ). When

5 ≤ g ≤ 8, by Lemma 7.16, d(P ) ≥ 2[(ϑ−t+2)(ϑ−t−1)+(t+1)]
t+1 ≥ 2[(ϑ−t−1)d

g
4e+(t+1)]

t+1 .
Therefore, we can assume that g ≥ 9.

Let k =
⌊
g−1

4

⌋
andM0,M1, . . .Mk, T1, T2, . . . , Tk be as given by Claim 7.18.1.

Let V1 = M0
⊎
M1

⊎ · · ·⊎Mk and V2 = V (P )\V1. By Claim 7.18.1, V1 ⊆ V (P )



152 Chapter 7. Heterochromatic paths in edge colored graphs

and for each v ∈ V1, |N(v)∩V (P )| ≥ 2(ϑ− t) and |Mk| ≥ (ϑ− t)(ϑ− t−1)k−1.
By Lemma 7.5, |N(x)∩ V (P )| ≥ 2(ϑ− t) and |N(y)∩ V (P )| ≥ 2(ϑ− t). This
implies |N(x) ∩ V (P )| ≥ 2 and |N(y) ∩ V (P )| ≥ 2, since t ≤ ϑ − 1 by our
assumption. Since all nodes in V (P ) other than x, y are internal nodes of the
path P , it is clear that for each v ∈ V2, |N(v) ∩ V (P )| ≥ 2.

Since V (P ) = V1
⊎
V2, from the above observations we get,

Γ(P ) = ∑
u∈V1 |N(u) ∩ V (P )|+∑

u∈V2 |N(u) ∩ V (P )|
≥ |V1|2(ϑ− t) + 2|V2|
= 2|V1|(ϑ− t) + 2(t+ 1− |V1|)
= 2|V1|(ϑ− t− 1) + 2(t+ 1)
≥ 2|Mk|(ϑ− t− 1) + 2(t+ 1)
≥ 2(ϑ− t)(ϑ− t− 1)k−1(ϑ− t− 1) + 2(t+ 1)
≥ 2[(ϑ− t− 1)k+1 + (t+ 1)]
= 2[(ϑ− t− 1)d

g
4e + (t+ 1)],

since k =
⌊
g−1

4

⌋
, which implies k + 1 =

⌈
g
4

⌉
.

This implies that if G has girth g or more, where g ≥ 5, the average de-
gree of the induced subgraph of G on the vertex set V (P ) satisfies d(P ) ≥
2[(ϑ−t−1)d

g
4e+(t+1)]

t+1 .

Theorem 7.20. Let G be an edge colored graph of girth g ≥ 5. Then the

maximum length heterochromatic path in G has length at least (ϑ−1)−ϑ
g

d g4e(g−2)

Proof. Let t be the length of a maximum length heterochromatic path P in G.
If ϑ− t ≤ 1, the lemma follows directly. Therefore, since ϑ− t is an integer, we
assume that ϑ − t ≥ 2. By Lemma 7.19, the average degree d of the induced

subgraph of G on V (P ) is at least 2[(ϑ−t−1)d
g
4e+(t+1)]

t+1 . Using Lemma 7.15, we

get, t + 1 ≥ 4
(⌊

d
2

⌋) g−2
2 ≥ 4(ϑ − t − 1)d

g
4e g−2

2 . To satisfy this, we should have

t+ 1 ≥ ϑ− ϑ
g

d g4e(g−2) or t ≥ (ϑ− 1)− ϑ
g

d g4e(g−2) .

Corollary 7.21. • If the girth of G is at least 9, then λ(G) ≥ (ϑ−1)−ϑ
9

21 .

• If the girth of G is at least 10, then λ(G) ≥ (ϑ− 1)− ϑ
10
24 .

• If the girth of G is at least 13, then λ(G) ≥ (ϑ− 1)− ϑ 13
44 .

• If the girth of G is at least 4 log2(ϑ) + 2, then λ(G) ≥ ϑ− 2.

Remark 7.2. When the girth of G is smaller than 9, the lower bounds given by
Theorem 7.14 and Theorem 7.17 are better than the lower bound given by The-
orem 7.20. However, as the girth increases, the bound given by Theorem 7.20
outperforms the bounds given by Theorem 7.14 and Theorem 7.17.
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7.4 Maximum heterochromatic paths in hete-
rochromatic triangle-free graphs

If a graph G is edge colored in such a way that each triangle in G is colored
with at most two colors, we say that the coloring of G is a Gallai Coloring.
If the edges of a triangle are colored with three distinct colors, we call it a
Gallai triangle or a heterochromatic triangle. Chen and Li [34] showed that
if an edge colored graph G has no heterochromatic triangles, then G has a
heterochromatic path of length at least

⌈
3ϑ(G)

4

⌉
. In this section, we give a

proof showing that this bound can be improved to
⌊

13ϑ(G)
17

⌋
.

Let G be a Gallai colored graph and let P be a maximum length het-
erochromatic path in G. Let P be of length t and be given by x = u0,
u1, . . . , ut = y and OLD/∈y, OLDy→P , OLDy9P , NEWy→P be defined as in
Section 7.2. Recall that TP (x) = {ui ∈ N(x) | color(x, ui) /∈ C(P )} and
MP (x) = {ui | ui is the predecessor of a vertex in TP (x) in the path P from
x to y}.

Let T ′x be a subset of TP (x) of cardinality ϑ− t chosen in such a way that if
ui, uj ∈ T ′x, then color(x, ui) 6= color(x, uj). We can define T ′x this way because
there are at least ϑ − t distinct new colors incident at x and by Lemma 7.1,
all such edges should have their other end point in V (P ).

We define M ′
x = {ui | ui is the predecessor of a vertex in T ′x in the path P

from x to y}. By this definition, M ′
x ⊆MP (x) and |M ′

x| = ϑ− t. Correspond-
ing to each ui ∈M ′

x, let χi = C(P ) ∪ {color(x, ui+1}, as in Section 7.3.

Lemma 7.22. Let G be a Gallai colored graph. Let P be a maximum length
heterochromatic path in G and be given by x = u0, u1, . . . , ut = y. LetM ′

x be as
defined above and ui ∈M ′

x. Then color(ui, ui+1) belongs to OLD/∈y
⊎
OLDy→P .

Moreover, if ui, uj ∈M ′
x with i 6= j, then |i− j| > 1.

Proof. The first part of this lemma follows from Lemma 7.4, because M ′
x ⊆

MP (x).
Now we show that the second part of the lemma follows from the Gallai

coloring property of G. For contradiction, assume that two consecutive vertices
in P , say, ui, ui+1 ∈ M ′

x. This implies that ui+1, ui+2 both belong to T ′x. By
the definition of T ′x, we have color(x, ui+1) /∈ C(P ), color(x, ui+2) /∈ C(P )
and color(x, ui+1) 6= color(x, ui+2). This implies that the vertices x, ui+1, ui+2

induce a Gallai triangle in G, a contradiction.

Lemma 7.23. Let G be a Gallai colored graph. Let P be a maximum length
heterochromatic path in G and be given by x = u0, u1, . . . , ut = y. Let M ′

x

be as defined earlier. Then, there exists a vertex um ∈ M ′
x such that we can

choose
⌈

(ϑ−t−2)
4

⌉
distinctly colored edges from um to V (P ) \M ′

x such that: (i)
no chosen edge from um is to um′+1 where um′ ∈ M ′

x with m′ > m. (ii) no
chosen edge has its color from the set χm.
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Proof. We will describe the construction of a subgraph H ′′ of G and show the
existence of a um ∈ V (H ′′) with the desired properties. To construct H ′′, we
do the following.

Step 1: In this step, we construct a subgraph H of G. We will be defining
the subgraph H by specifying its edge set E(H). The vertex set of H will be
implicitly taken as the union of the endpoints of edges in E(H). We will be
carefully selecting the edges to add to H so that no edge of H has its color
from the set C(P ). To select the edges of H, we do the following.

Consider the vertices inM ′
x in the order they appear in the heterochromatic

path P from x to y. While considering ui ∈M ′
x, do the following:

1. If no edge incident at ui has been included in H so far, for each color
c /∈ χi which is present at ui in G, do the following: Choose exactly one
edge of color c incident at ui and include in H, giving preference to an
edge from ui to another vertex in M ′

x, if one exists.

2. If some edge incident at ui has been already included in H, for each color
c /∈ χi which is present at ui in G do the following: If no edge incident
at ui of color c has been added into H so far, choose exactly one edge of
color c incident at ui in G and include it in H, giving preference to an
edge from ui to another vertex in M ′

x, if one exists.

From the above procedure, it is clear that all the edges added have at least
one end point in M ′

x ⊆ V (P ). Since none of the edges added while considering
ui ∈M ′

x have color from the set χi, by Lemma 7.9, all the selected edges have
their both end points in V (P ). Therefore, V (H) ⊆ V (P ). From Lemma 7.9,
it is also clear that for each ui ∈ M ′

x, the color degree of ui in H is at least
ϑ− t− 1.

In the next step, we will clean up H, by deleting some of its edges. However,
before proceeding to the next step, let us get a lower bound for the total
number of edges in H. Clearly, M ′

x ⊆ V (H) and all edges in H have one of
its end points in M ′

x. For each vertex ui ∈ M ′
x, let bi represent the number

of vertices in M ′
x other than ui, which are non-adjacent to ui in H. Thus, for

each ui ∈ M ′
x, there are |M ′

x| − 1 − bi = ϑ − t − 1 − bi edges in H from ui
to other vertices in M ′

x. This implies that the number of edges of H in the
induced subgraph on M ′

x is s1 = 1
2
∑
ui∈M ′x (ϑ− t− 1− bi).

We claim that if a color c is repeated at ui ∈ M ′
x, all edges of color c

incident at ui have their other end point in M ′
x itself. To see this, assume

that (ui, uj) ∈ E(H) with uj /∈ M ′
x and color(ui, uj) = c. Since uj /∈ M ′

x, this
edge should have been added in Step 1 while considering ui. By rule 2 of the
procedure mentioned in Step 1, this implies that color c was not present at ui
before considering ui and there are no edges incident at ui of color c with its
other endpoint also in M ′

x. Rule 2 also ensures that while considering ui the
only edge of color c incident at ui added to E(H) is (ui, uj). Since there are no
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edges incident at ui of color c with its other endpoint also in M ′
x, at the end of

Step 1 the only edge of color c incident at ui in H would be (ui, uj), proving
our claim. Similarly, if color(x, ui+1) occurs at ui ∈M ′

x, all edges of this color
incident at ui have their other end point in M ′

x itself, because no edge of color
color(x, ui+1) was selected while considering ui, since color(x, ui+1) ∈ χi. To
make our later arguments easier, imagine that for each color present at ui in H,
the vertex ui ∈M ′

x puts a red-flag on all except one edge of that color incident
at ui in H. Let ri represent the number of red-flags at ui. From the definitions
of bi and ri, for each ui ∈M ′

x, the number of distinct colored edges occurring at
ui in H, with their other end point inM ′

x is |M ′
x|−1−bi−ri = ϑ−t−1−bi−ri.

Since the color degree of ui in H is at least ϑ − t − 1, this implies that
there are at least bi + ri edges from ui to V (H) \M ′

x in H. Therefore, the
total number of edges in H with exactly one end point in M ′

x and the other
point in V (H) \M ′

x is at least s2 = ∑
ui∈M ′x (bi + ri). Thus the total number

of edges in H is at least s1 + s2 = 1
2
∑
ui∈M ′x (ϑ− t− 1− bi) +∑

ui∈M ′x (bi + ri).
Re-arranging the terms in the summation and simplifying, we get

|E(H)| ≥
∑

ui∈M ′x

(ϑ− t− 1)
2 +

∑
ui∈M ′x

bi
2 +

∑
ui∈M ′x

ri

Since |M ′
x| = ϑ− t, we get

|E(H)| ≥ (ϑ− t)(ϑ− t− 1)
2 +

∑
ui∈M ′x

bi
2 +

∑
ui∈M ′x

ri (7.1)

Step 2: The objective here is to delete some edges from H to make sure that
in the resultant graph H ′′ (i) there are no edges of the form (ui, uj+1) where
ui, uj both belong toM ′

x with j > i (ii) the induced subgraph onM ′
x is triangle

free and (iii) there are at least (ϑ−t)(ϑ−t−1)
2 edges.

Construction of H ′′ is done in two stages. Initialize H ′ = H and consider
the edges of H one by one and if the edge being considered is violating condi-
tion (i) above, delete that edge from H ′. Once all the edges of H have been
processed this way, it is clear that H ′ will satisfy condition (i). Now, initialize
H ′′ = H ′ and repeat the following procedure until the induced subgraph of
H ′′ on M ′

x becomes triangle free: if ui, uj, uk ∈M ′
x and they induce a triangle

in H ′, we know that at least two edges of this triangle have the same color,
because G has no Gallai triangles. We choose two edges e1, e2 of this triangle
such that color(e1) = color(e2). Since this color is repeating at the common
end point of e1 and e2, at least one of these edges would have got a red-flag
from their common end point. We delete one of the edges e1 and e2, making
sure that the deleted edge had got a red-flag from the common end point of
e1 and e2. It is clear that H ′′ satisfies both conditions (i) and (ii). We claim
that H ′′ has at least (ϑ−t)(ϑ−t−1)

2 edges.
Consider an edge e ∈ E(H) \ E(H ′). From the procedure we followed in

Step 2, e is an edge from ui to uj+1, where ui, uj ∈ M ′
x with j > i. First
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note that color(ui, uj+1) 6= color(uj, uj+1), since color(ui, uj+1) /∈ C(P ) by
the construction of H and color(uj, uj+1) ∈ C(P ). We claim that (ui, uj) /∈
E(H). If this was not the case, since G has no Gallai triangles, color(ui, uj) ∈
{color(uj, uj+1), color(ui, uj+1)}. If color(ui, uj) = color(uj, uj+1), which is an
old color, we have (ui, uj) /∈ E(H), a contradiction. Now, consider the case
when color(ui, uj) = color(ui, uj+1). By Lemma 7.22, we know that uj+1 /∈M ′

x.
Therefore, since uj ∈ M ′

x with j > i, if color(ui, uj) = color(ui, uj+1), by our
preference rules while adding edges to H, the edge color(ui, uj) would have got
preference over the edge (ui, uj+1), and (ui, uj+1) would not have been added
to E(H) while considering ui, raising a contradiction.

Thus, with each deleted edge (ui, uj+1), where ui, uj ∈ M ′
x with j > i, we

can associate the missing edge (ui, uj) of the graph H. This implies that, there
is an injective mapping from E(H)\E(H ′) to the set of missing edges between
vertices inM ′

x in H. Therefore we get |E(H)\E(H ′)| ≤ the number of missing
edges between vertices in M ′

x in the graph H. But, by the definition of bi, the
number of missing edges in H between vertices in M ′

x is ∑ui∈M ′x
bi
2 . This gives,

|E(H ′)| ≥ |E(H)| −∑ui∈M ′x
bi
2 . Thus, using inequality 7.1 above, we get:

|E(H ′)| ≥ (ϑ− t)(ϑ− t− 1)
2 +

∑
ui∈M ′x

ri (7.2)

Consider an edge e ∈ E(H ′) \ E(H ′′). By our construction, e was part of
a triangle in H formed by three vertices in M ′

x, and color(e) = color(e′) for
another edge e′ of this triangle and the common end point ui of e and e′ had
placed a red flag on e. Thus, each edge e ∈ E(H ′) \ E(H ′′) had a red flag on
it. Therefore, |E(H ′) \ E(H ′′)| ≤ the total number of edges with red flags on
them, which is at most ∑ui∈M ′x ri by the definition of ri. From this we get,
|E(H ′′)| ≥ |E(H ′)| −∑ui∈M ′x ri.

Thus, by inequality 7.2 above, we have |E(H ′′)| ≥ (ϑ−t)(ϑ−t−1)
2 and thus, H ′′

satisfies all the properties (i), (ii) and (iii) stated at the beginning of Step 2.
Now, we proceed to prove the lemma. Since the induced subgraph of H ′′

on M ′
x is triangle free, this induced subgraph has at most

⌊
|M ′x|2

4

⌋
=
⌊

(ϑ−t)2

4

⌋
edges, by Turan’s 2 theorem [40]. Since all edges in H ′′ have one of their end
points inM ′

x, the number of edges in H ′′ with exactly one end point inM ′
x and

the other end point in V (H ′′)\M ′
x is at least |E(H ′′)|−

⌊
|M ′x|2

4

⌋
which is at least

(ϑ−t)(ϑ−t−1)
2 − (ϑ−t)2

4 = (ϑ−t)2

4 − (ϑ−t)
2 . By pigeonhole principle, this implies that

there exists a vertex um ∈ M ′
x such that there are at least

⌈
(ϑ−t−2)

4

⌉
edges in

H ′′ incident at um with their other end point in V (H ′′)\M ′
x. By construction,

we have made sure that none of these edges have a color from the set χm and
none of them have a vertex um′+1 as their other end point, where um′ ∈ M ′

x

2A triangle free graph on n vertices has at most
⌊

n2

4

⌋
edges



7.4. Heterochromatic paths in heterochromatic triangle-free graphs 157

with m′ > m. We also have V (H ′′) ⊆ V (P ), because we had V (H) ⊆ V (P ) to
start with. Thus, the lemma holds.

Let G be a Gallai colored graph. Let P be a maximum length heterochro-
matic path in G and be given by x = u0, u1, . . . , ut = y. Let um ∈ M ′

x be
the vertex satisfying the conditions specified in Lemma 7.23 and let Ψ(um) be
defined as in Definition 7.4. The observation below follows from Lemma 7.10,
by noting that um ∈MP (x).

Observation 7.3. For each uj ∈ Ψ(um), color(uj, uj+1) belongs to
OLD/∈y

⊎
OLDy→P .

We use the following lemma very crucially for obtaining the bound λ(G) ≥⌊
13ϑ
17

⌋
. Recall that COLORy→P = {color(y, ui) | ui ∈ N(y) ∩ V (P )}.

Observation 7.4. |COLORy→P | ≥ 2(ϑ− t) +
⌈

(ϑ−t−2)
4

⌉
. Moreover, there are

at least ϑ− t new colors in the set COLORy→P .

Proof. By the definition of Ψ(um), from Lemma 7.23 we get |Ψ(um) \M ′
x| ≥⌈

(ϑ−t−2)
4

⌉
. Since |M ′

x| ≥ ϑ− t, this implies, |M ′
x∪Ψ(um)| ≥ (ϑ− t) +

⌈
(ϑ−t−2)

4

⌉
.

This gives |OLD/∈y
⊎
OLDy→P | ≥ (ϑ − t) +

⌈
(ϑ−t−2)

4

⌉
, by Lemma 7.22 and

Observation 7.3. Now, by Lemma 7.2, |COLORy→P | ≥ 2(ϑ − t) +
⌈

(ϑ−t−2)
4

⌉
.

Moreover, there are at least ϑ− t new colors in the set COLORy→P , because
the color degree of y is at least ϑ and all edges of new colors incident at y have
their other end points in V (P ), by Lemma 7.1.

The above observation allows us to make the following definition.

Definition 7.5. Let G be a Gallai colored graph. Let P be a maximum length
heterochromatic path in G and be given by x = u0, u1, . . . , ut = y. Let D(y)
represent a set of 2(ϑ − t) +

⌈
(ϑ−t−2)

4

⌉
neighbors of y in V (P ) such that no

two edges from y to D(y) have the same color and at least ϑ − t of them are
of new colors. For some i and j with 0 ≤ i ≤ j < t, the consecutive set of
vertices ui, ui+1, . . . , uj of the heterochromatic path P are said to form a block
of neighbors of y in P if uj+1 /∈ D(y) and if i > 0, ui−1 also does not belong
to D(y), but for each i ≤ k ≤ j, uk ∈ D(y). We denote this block as Bi,j.

Lemma 7.24. Let G be a Gallai colored graph. Let P be a maximum length
heterochromatic path in G and be given by x = u0, u1, . . . , ut = y. The blocks
of neighbors of y in P partition the set D(y). If ui, uj ∈ D(y) with i 6= j such
that both (y, ui) and (y, uj) are of new colors, then ui and uj must belong to
two different blocks.

Proof. The first part of this lemma directly follows from the definition of D(y).
Suppose ui, uj ∈ D(y) with i 6= j such that both (y, ui) and (y, ui) are of new
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colors. Without loss of generality, assume that i < j. For contradiction,
assume that both ui and uj belong to the same block of neighbors of y in
P . This implies that all vertices in the subpath P ′ = ui, ui+1, . . . , uj of the
heterochromatic path P are neighbors of y in G, through distinctly colored
edges from y. Notice that for each edge (uk, uk+1) of the subpath P ′, the
vertex triple (uk, uk+1, y) induce a triangle in G, which is not a Gallai triangle.
We know that the edges in P ′ are colored with (j − i) distinct old colors,
the edges (ui, y), (ui+1, y), . . . , (uj, y) are all distinctly colored, and both (y, ui)
and (y, uj) are of new colors. To avoid Gallai triangles, each of the (j − i)
distinct old colors that occurred on the subpath P ′ should appear on the edges
(ui+1, y), (ui+2, y), . . . , (uj−1, y), which are only j− i− 1 in number. Since this
is impossible, we can infer that ui and uj cannot belong to the same block of
neighbors of y in P .

Theorem 7.25. Let G be a Gallai colored graph with minimum color degree
ϑ. Then G contains a heterochromatic path of length at least

⌊
13ϑ
17

⌋
.

Proof. Let P be a maximum length heterochromatic path in G and be given by
x = u0, u1, . . . , ut = y. Let D(y) = Bi1,j1

⊎
Bi2,j2

⊎ · · ·⊎Bik,jk be the partition
of D(y) into blocks, such that 0 ≤ i1 ≤ j1 < i2 ≤ j2 < i3 · · · < ik ≤ jk < t.
From this we get, ∑k

l=1 (|Bil,jl |+ 1) ≤ t+ 1, the number of vertices in the path
P . Since ∑k

l=1 |Bil,jl | = |D(y)| = 2(ϑ− t) +
⌈

(ϑ−t−2)
4

⌉
, we get

2(ϑ− t) +
⌈

(ϑ− t− 2)
4

⌉
+ k ≤ t+ 1

By the definition of D(y), there are at least ϑ− t distinctly colored edges with
new colors from y toD(y) and using Lemma 7.24, we can infer that the number
of blocks k ≥ ϑ− t. Therefore, the above inequality gives,

3(ϑ− t) +
⌈

(ϑ− t− 2)
4

⌉
≤ t+ 1

This implies, t ≥
⌈

13ϑ
17 −

6
17

⌉
≥
⌊

13ϑ
17

⌋

7.5 Conclusion
We have shown that when the girth of a graph G is as high as 4 log2(ϑ) + 2, it
contains a heterochromatic path of length at least ϑ−2, which is only one less
than the bound conjectured by Chen and Li [32]. A weaker requirement that
G just does not contain four cycles is enough to guarantee a lower bound of
ϑ−o(ϑ). We have also shown that if G has no heterochromatic triangles, then
it contains a heterochromatic path of length at least

⌊
13ϑ
17

⌋
, an improvement

over the existing result. The conjecture of ϑ − 1 lower bound by Chen and
Li [32] for the length of maximum heterochromatic paths in general graphs
remains open.



Chapter 8

Conclusion

In the first part of this thesis, we studied algorithmic questions on the boxicity
and cubicity of graphs. In the general case, we have exhibited polynomial time
o(n) factor approximation algorithms for computing the boxicity and cubicity.
As a corollary, a o(n) factor approximation algorithm for computing the par-
tial order dimension of finite posets and a o(n) factor approximation algorithm
for computing the threshold dimension of split graphs were also derived. Since
polynomial time approximations for any of these problems within an O(n1−ε)
factor for any ε > 0 is considered unlikely, no significant improvement is ex-
pected in the approximation factor. We have given FPT approximations for
boxicity with several interesting edit distance parameters. Though it is known
that boxicity and cubicity are FPT with respect to minimum vertex number as
the parameter, similar results for other edit distance parameters are not known
yet. Moreover, except for the minimum vertex cover number parameter, FPT
approximation algorithms for cubicity are not known with other edit distance
parameters.

For many special graph classes including bipartite, co-bipartite and split
graphs, the hardness result as in the general case holds for both boxicity and
cubicity. Not many approximation algorithms for these problems were known
previously for any well-known graph class. We have given polynomial time
algorithms for a constant factor approximation for computing the boxicity of
circular arc graphs, and an additive two approximation for computing the
boxicity of some important subclasses of circular arc graphs. A polynomial
time algorithm for approximating the cubicity of circular arc graphs is also
obtained, which gives a constant factor approximation up to an additive error
of log n. We believe that computing the boxicity and the cubicity of circular
arc graphs is NP-Hard; however, obtaining a formal proof for this fact remains
open.

We obtained a constant factor approximation algorithm for computing the
cubicity of trees which runs in deterministic polynomial time and a randomized
algorithm running in polynomial time to get the corresponding cube represen-
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tation. Devising a deterministic algorithm for the latter part or derandomizing
our randomized algorithm would be an interesting problem. It is not yet clear
whether computing the cubicity of trees is NP-Hard. We believe that recog-
nizing trees of cubicity two (i.e, recognizing trees which are intersection graphs
of axis-parallel squares) itself is NP-Hard.

The second part of this thesis described a polynomial time algorithm to add
edges to a connected outerplanar graph G of pathwidth p to produce a super-
graph of G, which is 2-vertex-connected, outerplanar and of pathwidth O(p).
Using this result, a constant factor approximation algorithm for computing
minimum height planar straight line grid drawings of outerplanar graphs can
be derived, by extending the existing algorithm for 2-vertex connected outer-
planar graphs. This closes an open problem raised by Biedl [14]. The factor
of approximation could be improved, if it was possible to better optimize the
procedure of edge addition so that the blow up in the pathwidth is still lower.

In the third part of this thesis, we studied the cardinality of fixed orientation
equilateral triangle matchings of point sets in general position. This was done
by studying the structural and geometric properties of an associated geometric
graph, which is the same as a triangle distance Delaunay graph of the point set
and is also equivalent to a half-θ6 graph of the point set. It was shown that for
a set of n points in general position, the cardinality of maximum matchings in
TD Delaunay graphs (equivalently half-θ6 graphs) is at least

⌈
n−1

3

⌉
and there

are point sets for which this bound is tight.
It was also shown that for a set of n points in general position, its θ6

graph can have at most 5n − 11 edges. It is still an open problem to decide
whether this upper bound is tight, since we do not have any examples for which
the number of edges exceeds

(
4 + 1

3

)
n − 13. It is an interesting question to

see whether for every point set in general position, its Θ6 graph contains a
matching of size

⌊
n
2

⌋
. So far, we were not able to get any counter examples for

this claim.
In the last part of the thesis, we studied lower bounds for λ(G)-the length

of maximum heterochromatic paths in edge colored graphs. We showed that
for graphs without four cycles, λ(G) ≥ ϑ(G) − o(ϑ(G)), where ϑ(G) is the
minimum color degree of G. If the girth is at least 4 log2(ϑ(G)) + 2, then we
obtained λ(G) ≥ ϑ(G)− 2. The conjecture that λ(G) ≥ ϑ(G)− 1 for any edge
colored graph G is still open.
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