CS1100 - Lecture 1

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

1 Basic Concepts

Very briefly, a computer is a device for performing computations. When
compared to a calculator, it has the additional capacity to store a a sequence
of instructions and execute it.

A program is a sequence of instructions, written in a suitable format.

Example 1. A program to compute the sum of two numbers

int x,y,z
input x
input y
z<-—-xXx+y
output z

In the above program, x,y and z are known as variables.

Basic units of a computer are shown in the figure below:

MEMORY

PROGRAM| | DATA
MEMORY MEMORY

| SCREEN

KEYBOARD

CONTROL
UNIT

ALU

CPU

Memory refers to the storage unit in a computer. For easy understand-
ing, one may imagine that memory has two units: one for storing programs
and the other for storing data. Programs are stored in the program memory
while variables are stored in the data memory. Keyboard is the commonly
used input device and monitor/screen is the commonly used ouput device.
Central Processing Unit (CPU) is the unit which co-ordinates all other
units. It has a control unit which controls its operations and an ALU to
perform various arithmetic and logical operations.

Associated with each variable, there is an address for it in the data mem-
ory. Similar to the way a pincode is internally used by the postal department
to refer to a place, the computer internally uses the address of a variable to
refer to that variable. But a programmer usually thinks in terms of variables.
For each variable, there is some space given in the data memory to store the
value of the variable. Value of a variable changes as the program execution
progresses.

2 Memory state during program execution

A Program Counter (PC) indicates the position of the next instruction to
be executed. When a program as in Example 1 executes, instructions are
executed one by one, from the beginning. During this time, the program is
in the program memory. While executing an input instruction for getting

the value a variable, the value is accepted from the keyboard and copied to
the space given for that variable, in the data memory. Similarly, when an
output instruction is executed for a variable, the value of that variable is
taken from the space given for that variable and it is displayed on the screen.
When an arithmetic/logic assignment operation is performed, the values of
variables after the arrow in the assignment instruction are taken to the ALU,
the operations are performed and the result is written back to the space given
for the variable on left hand side of the arrow.

The memory state diagram after executing each instruction in Example 1
is shown below (assuming that the user enters 10 and 50 through keyboard,
as values for x and y):

X junk
int x,y,z y Junk
—— input x z Junk
input y
zZ <-——-x+y
output z
X 10
1 Juuk
int x,y,z y ‘
input X 7 junk \
— input y
Z <-—— X +y
output z

int x,y,z 50

input x

z junk

input y
4,z<——x+y
output z

int x,y,z y

60

N

input x

input y
z <-——-x +y
—» output z

After executing the last step, the output will be displayed on the screen.

The previous example of adding two numbers can also be written in a differ-

ent way.
Example 2. A second program to compute the sum of two numbers

int x, sum

sum <-- 0

input x;

sum <-- sum + X
input x

sum <-- sum + X
output sum

The memory state diagram for Example 2 is shown below:

» sum <—-- O sum

—— 1input x;

_ 5 sum <-- sum + X

int x, sum

junk

junk

input x;

sum <-- sum + X
input x

sum <-- sum + X
output sum

int x, sum

juuk

sum

sum <-- 0

sum <-- sum + X
input x

sum <-- sum + X
output sum

int x, sum

10

sum <__ O sum

input Xx;

input x
sum <-- sum + X
output sum

int x, sum
sum <-- 0 sum
input x;

sum <-- sum + X

input x

sum <-- sum + X
output sum

10

10

. X 50
int x, sum

sum 10

sum <-- 0

input x;
sum <-- sum + X
input x

—» sum <-- sum + X
output sum

int x, sum x 50
sum <-- 0 sum 60
input x;

sum <-- sum + X

input x

sum <-- sum + X
— » output sum

After executing the last step, the final sum is printed on screen.

Now, we consider the problem of exchanging the values of two variables.
As a first attempt, consider the program below:

Example 3.
int x,y
x <-- 10
y <= 20
y <—— X
X <——y

The above program will not perform the exchange of the values of the two
variables, as explained in the figure below:

int x,y

— » x <——10
y <-- 20
y <—— X
X <——y
int x,y
x <-- 10

— y <——= 20
y <—— X
X <-——y
int x,y
x <-- 10
y <-- 20

— y <= X
X <——y
int x,y
x <-= 10
y <= 20
y <—— X

—» X <-- y

junk

junk

10

junk

10

20

10

10

10

int x,y
x <-- 10
y <-- 20
y <—— X

_ X <-—y

The program can be corrected as follows.

int x,y
x <-- 10
y <-- 20
z <-— X
X <-—y
y <-- z

The memory state diagram for the corrected version after each step of
execution is as follows:

x junk |
int x,y y junk |
—» x <-- 10 z junk ‘
y <-- 20
z <-— X
X <——y
y <-— z
x 10
int x,y y Junk ‘
x <-— 10 z junk ‘
sy <= 20
z <-—— X
X <-—y
y <-— z

x <-—— 10
y <-- 20
—» Z <-—- X
X <——y
y <-— z
int x,y
x <-- 10
y <-- 20
z <-— X
s X <y
y <-—- z
int x,y
x <-- 10
y <-= 20
z <-—— X
X <——y
_ »y <-— 2z
int x,y
x <-- 10
y <-- 20
z <-—— X
X <—- y
— >y <—— z

v

10

20

junk

10

20

10

20

20

10

20

10

10

Homework 1.
after each step of execution and get the values of variables and y after the
last step of execution.

int x,y
x <-- 10
y <= 20
X <-—— X +y
y <= x-y
X <-—— X -y

Draw the memory state diagram of the given program

10

