(CS1100 - Lecture 21

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

So far we were dealing with simple functions in which one function was called by
another function. In this lecture, we will study about functions that call themselves.

Recursive Functions

In mathematics we have studied about functions which are defined in terms of itself. Fac-
torial function is one such function, which is defined as follows.

(_Jnx(=1! :n>0
R :n=0

Such functions which are defined in terms of itself are called recursive functions. Another
example for a recursive mathematical function is given below.

ry={ 3]

Functions in mathematics manipulate only the data. They take input parameters
and give out the value of the function. A function in a program deals with both data
manipulation and manipulation of program control. Just like most other programming
languages, C also supports defining recursive functions.

Let us consider writing a recursive function to compute the factorial of a number n.
The function header of the recursive function is the same as the function header of the
simple iterative function for factorial that we explained in the last class. The function
takes one integer as input parameter and returns a value of type long long int. A first
attempt of writing a recursively defined function for factorial is given below.

Attempt 1:

long long int factorial(int k)
{
long long int f;
f=factorial (k-1);
f=fxk;
return f;

This function definition is not correct because the function does not define a base condition
according to which the function stops calling itself recursively and returns some value. If
we write the function this way, the execution of this function will never terminate.

It is very important to have the termination condition(s) specified properly in the
function definition. A corrected version of the recursive function definition of factorial
can be written as follows.

long long int factorial(int k)
{
long long int f;
if (k<0)
return (-1);
if (k==0] |k==1)
return (1);
else
{
f=factorial (k-1);
f=fxk;
return f;

In the above function, if the input parameter k is found to be negative, -1 is returned
to indicate error. For k values 0 or 1, the function returns 1. Otherwise, the function
factorial calls itself with parameter k-1; completes recursively executing factorial (k-1)
and on return from the recursive call factorial (k-1), the value of (k — 1)! is computed
and assigned to the variable f. Then, f=f*k; is executed, so that the value of f gets up-
dated to (k-1) 'k = k! and this value of f is returned. Towards the end of this lecture,
we will see how to formally prove the correctness of the above function.
The control flow associated with the above function is shown in the figure below.

factorial (k

)
k-l() ()

factorial(k-1)
k-2

2N,

factorial(3
(factorial(2

factorial(1

A main() function which uses the above function definition can be written as follows.

int main()
{
int n;
long long int fact;
printf ("enter a non-negative number n (<20)\n");
scanf ("%d", &n);
if (n < 20)
{
fact=factorial(n);
printf ("%d! = %11d \n",n, fact);
}
else
printf("n too large \n");
return (0);

Detailed control and data flow of the program for the input n=4:

When the program starts execution the activation record of main() gets created in
memory and it will have memory locations for storing the local variables fact and n.
After reading n=4 in the main() function, the memory diagram is as follows.

n 4
fact junk

J frame 1 «—— main()

When the line fact=factorial(n); starts execution, a new activation record for
factorial() gets created in memory with locations for storing variables £ and k. Since
the function call is made with the value of the parameter n as 4, the value of the ac-
tual parameter n in the function call is copied to the location of k in the new activation
record. After this, the program control passes to the first line of factorial() function
for executing factorial (k) with k=4. The contents of memory locations at this point
of execution and the control flow during the function call is as follows.

line number:9 main () k 4

J frame 2 «—— factorial()

f junk
4 n 4 * .
factorial() fact junk J frame 1 main()

Now the execution of factorial (k) with k=4 begins. Since both the if conditions
are false, the instruction f=factorial (k-1); (line number 10) will start to execute. For
this, again a new activation record for factorial () gets created in memory with loca-
tions for storing new instances of variables f and k. Note that these variables in the new
activation record are completely different from those in the previous activation record
of factorial. Since this time the function call factorial() is made with the value of
the actual parameter k-1 (which has value 3), the value 3 is copied to the location of k
in the new activation record. After this, the program control passes to the first line of
factorial () function for executing factorial (k) with k=3. The contents of memory
locations at this point of execution and the control flow during the function call is as
follows.

line number:9 main () . . -

: frame 3 <«—— factorial(3)
4 i f junk _
k 4 —

line number:10 factorial (4) £ junk frame 2 <«—— factorial(4)
3 l n 4 —

; | junk | frame 1 main()
factorial(3) fact Jun _ -

When factorial (k) with k=3 execute, again both the if conditions are false and the
instruction f=factorial(k-1); (line number 10) will start to execute.

For this, again a new activation record for factorial() gets created in memory
with locations for storing new instances of variables £ and k. Since the function call
factorial() is made with the value of the actual parameter k-1 (which has value 2 as
per the activation record of the calling function), the value 2 is copied to the location of
k in the new activation record. After this, the program control passes to the first line of
factorial () function for executing factorial (k) with k=2. The contents of memory lo-
cations at this point of execution and the control flow during the function call is as follows.

line number:9 main()
4 k 2 m
¢ junk frame 4 <« factorial(2)
line number:10 factorial() K 3 —]
i ; junk frame 3 <«——— factorial(3)
3 _|
k 4 N) factorial (4)
. actoria
line number:10 factorial() f junk _ frame 2
2 n 4 n :
fact junk frame 1 <4—— main()

factorial()

In the same way, while executing line number 10 of factorial(k) with k=2, a
call factorial(k-1) is made which invokes starting execution of a new instance of
factorial(k) with k=1. The contents of memory locations at this point of execution
and the control flow during the function call is as follows.

line number:9 main ()
4 l k 1 —
¢ ik frame 5 €*——— factorial(l)
line number:10 factorial () ! 5 -
K _
3 l ¢ Junk frame 4 «—— factorial(2)
. . k 3 -
line number:10 factorial () ; Sunk frame 3 <—— factorial(3)
2 l k 4 —
f funk frame 2 <4——— factorial(4)
line number:10 factorial () 7 .
n
1 fact junk B frame 1 <—— main()

factorial()

Now, the function factorial(k) with k=1 starts execution and since the condition
if (k==0] |k==1) is true, the function returns the value 1 to the calling function. The re-
turn value is copied to the location of the variable £ of the calling function (factorial (k)
with k=2) and the stack frame of the function call factorial (1) is deleted from the mem-
ory. After this the program control continues from line number 11 of factorial (k) with
k=2. The contents of memory locations at this point of execution and the control flow
diagram is as follows.

line number:9

line number:10

line number:10

line number:10

main()

‘|

factorial() .
3 £
factorial() k
f
2 k
factorial() f
n
1 l T ! fact
factorial()

junk

junk

junk

frame 4 4——— factorial(2)
frame 3 «—— factorial(3)
frame 2 <4—— factorial(4)

frame 1 -«—— main()

In line number 11 of factorial (k) with k=2, the value of £ gets updated to f*k which
is 1 x 2=2. In the next line, the new value of £ will be returned to the calling function
(factorial (k) with k=3). The memory diagram just before the return statement is as

given below.

line number:9

line number:10

line number:10

line number:10

main()

‘|

factorial() .

3 £

factorial() k
f

2 k

factorial() f
n

1 l T 1 fact

factorial()

junk

junk

junk

frame 4 o—— factorial(2)

frame 3 <«4—— factorial(3)
frame 2 <4—— factorial(4)

frame 1 «—— main()

Now, the function factorial(k) with k=2 returns the value 2. The return value is
copied to the location of the variable £ of the calling function (factorial (k) with k=3)
and the stack frame of the function factorial(2) is deleted from the memory. After
this the program control continues from line number 11 of factorial(k) with k=3. The
contents of memory locations at this point of execution and the control flow diagram is

as follows.

line number:9 main ()
4

line number:10 factorial ()

3
line number:10factorial () k 3 N)
' 5 frame 3 «——— factorial(3)
9 i T 9 f _
k 4]
line number:10 factorial () f junk frame 2 q——— factorial(4)
! i T 1 n 4 —)
factorial () fact junk B frame 1 4+—— main()

In line number 11 of factorial (k) with k=3, the value of £ gets updated to £f*k which
is 2 x 3=6. In the next line, the new value of £ will be returned to the calling function
(factorial (k) with k=4). The memory diagram just before the return statement is as
given below.

line number:9 main ()
4

line number:10 factorial ()

3
line number:10f i k 3 N .
:10factorial () frame 3 < factorial(3)
6 _
|t :
k 4]
line number:10 factorial () ¢ funk frame 2 <4—— factorial(4)

TR e

factorial() fact junk B

frame | «—— main()

Now, the function factorial (k) with k=3 returns the value 6. The return value is
copied to the location of the variable f of the calling function (factorial (k) with k=4)
and the stack frame of the function factorial(3) is deleted from the memory. After
this, the program control continues from line number 11 of factorial (k) with k=4. The
contents of memory locations at this point of execution and the control flow diagram is
as follows.

line number:9 main()

4
line number:10 factorial ()

3 6
line number:10 factorial ()

k 4]

2 ¢ T 2 ¢ J frame 2 <«—— factorial(4)
line number:10factorial () 6

1 1 n 4 n ;

fact junk framel < main()
factorial()

In line number 11 of factorial (k) with k=4, the value of f gets updated to f*k which
is 6 X 4=24. In the next line, the new value of £ will be returned to the calling function
main(). The memory diagram just before the return statement is as given below.

7

line number:9 main ()

4
line number:10 factorial ()

3 6
line number:10 factorial ()

2 5 4
line number:10factorial () f 2

1 1 n 4

| fact | junk
factorial() o

J frame 2 <«—— factorial(4)

J frame 1 g main()

The value 24 is returned to the main() function by factorial (k) with k=4 and the
activation record of factorial (k) with k=4 is removed from memory. The return value
is copied to the location of fact in the main() function. The memory diagram is as given

below.

line number:9 main ()

4 24

line number:10 factorial ()
3y #6

line number:10 factorial ()
2 $ # 2

line number:10 factorial ()

1‘ 1 n ‘ 4

factorial() fact 24

J frame 1 g main()

The program execution continues in main () and it displays 4!=24 to the user.

The factorial () function can be also re-written in a more concise way as follows.

long long int factorial(int k)

//returns k! for any input k such that 0 <= k <= 19

{
if (k<0)
return(-1);
if(k==1 || k ==0)
return(l);
else
{
return(k * factorial(k-1));
+
}

Proof of correctness of a recursive function

As we saw in the example of factorial() function, the control flow can go very deep
and there can be simultaneously many activation records for the same recursive function
in memory. This makes keeping track of the data and control manipulation a difficult
task for human beings. Therefore, we need a different way of proving the correctness of a
recursively defined function.

Usually the proof of correctness can be done using mathematical induction. Instead of
worrying about deeper and deeper levels of a recursive function call, we do the following:

e Induction base case: By analysing the function, prove that the function works cor-
rectly for the parameter values for the base cases. This will be usually simple to

do.

e Induction hypothesis: Assume that the function works correctly for smaller values
of the parameters than the formal parameters given in the function header.

e Inductive step: With the above assumption, analyse the function definition and
prove that the function works correctly for the parameter value given by the formal
parameter.

In this method of proof, we need not go too deep to analyse the correctness. Often just
assuming correctness of the previous level of the recursive function call will be enough.

Using the above recipe, the proof of correctness of the factorial() function can be
given as follows.

e [t is clear that for k=0, k=1 and k<0, the factorial() function terminates and
returns the correct value.

e Now assume that the factorial() function works correctly (and terminates) for
parameter values less than the value of k. In particular, by this assumption the
function call factorial(k-1) terminates and correctly returns the value (k-1)!.

e In the factorial () function, the return value of factorial (k-1) is multiplied with
the value of k and the result of this computation is the return value of the function
call factorial(k). It is clear that the return value is k*(k-1)!=k! which is the
correct result. This also shows that the function terminates for all input parameter
values.

In general, during the inductive proof it is not necessary that the formal parameter
values directly reduce. But it can be some other hidden parameter that may be reducing
so that finally the termination of the function is guaranteed when the value of this hidden
parameter reaches some base values. We will see some examples for this in upcoming
lectures.

Exercise: By looking at the following programs, predict their outputs. Execute these
programs and verify whether your guess is correct. Prove that the functions work as
intended.

Program 1:

#include<stdio.h>
void triangle2(int);
int main()
{
int n, r;
printf("enter n \n");
scanf ("%d4",&n) ;
if (n>0)
{
triangle2(n);

return O;

void triangle2(int n)
/* Explain what this does */

{
int i;
if (n<=0)
return;
else
{
triangle2(n-1);
for(i=0; i<n; i++)
{
printf ("0 ");
}
printf ("\n");
return;
}
+

10

Program 2:

#include<stdio.h>
void triangle3(int);
int main()
{
int n, r;
printf("enter n \n");
scanf ("%d",&n) ;
if (n>0)
{
triangle3(n);

return O;

void triangle3(int n)
/* Explain what this does */
{

int i;
if (n<=0)
return;
else
{
for(i=0; i<n; i++)
{
printf ("0 ");
}

printf("\n");

triangle3(n-1);
return;

11

