CS1100 - Lecture 22

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

Towers of Hanoi

In this lecture, we will see an example in which the real power of recursive programs is
evident. Towers of Hanoi is a puzzle in which there are three poles (P1, P2 and P3) and
a set of n discs, each disc having a different radius. All these discs are initially placed in
the first pole (P1) in such a way that no disc of larger radius is placed on a disc of lower radius.

Objective: The goal of the puzzle is to move all the discs from the first pole (P1) to
the third pole (P3) such that finally all the discs are arranged in Pole 3 in such a way that no
disc of larger radius is placed on a disc of lower radius. Pole 2 can be used for placing some
discs at some intermediate points of the game. There are some rules that must be followed
while moving the discs.

Rules:
e Move only one disc at a time.
e Never place a bigger disc on top of a smaller disc.

e In any move, moving only the top disc from a pole is allowed and the moved disc should
be placed only as the top most disc in another pole.

Let the number of discs be n. Solutions to this puzzle for some values of n are shown
below.

e For n=1,
1. move disc from P1 to P3
e For n=2,

1. move disc from P1 to P2
2. move disc from P1 to P3
3. move disc from P2 to P3

e For n=3,

1. move disc from P1 to P3
2. move disc from P1 to P2
3. move disc from P3 to P2
4.

move disc from P1 to P3

5. move disc from P2 to P1
6. move disc from P2 to P3
7. move disc from P1 to P3

For n=4, the process of listing the required moves iteratively might be difficult and the
difficulty increases as n value increases. To come up with a program which does the above
task without using any recursion is very difficult. Technically it is possible to do so; but such
solutions are very complicated and thus difficult to explain. However, there is an elegant and
short recursive solution for this puzzle.

Looking at the solutions of the problem for n = 2 and 3, we can make some observations.

For n=2, after step 1, the smaller disc is on P2, bigger disc is on P1, and P3 is empty. In
step 2, the bigger disc is moved from P1 to P3. After this, in step 3, the smaller disc in P2
is to moved to P3.

For n=3, after step 3, the smallest 2 discs are on P2, the biggest disc is on P1, and P3 is
empty. In steps 1-3, the biggest disc is not moved at all. In step 4, the biggest disc is moved
from P1 to P3. In steps 5-7, the smallest 2 discs get transferred from P2 to P3. During steps
5-7, the biggest disc is not moved.

Observe that if there are 2t+1 steps in total, in the first t steps, the smallest n-1 discs
get transferred from P1 to P2 without moving the largest disc and during this process P3 is
used as an intermediate pole. In step t+1, the biggest disc is moved from P1 to P3. In the
last t steps, the smallest n-1 discs get transferred from P2 to P3 without moving the largest
disc and during this process P1 is used as an intermediate pole.

This leads to the following recursive algorithm for performing this task.

Tower(n,P1,P2,P3) //for moving n discs from P1 to P3
1. if(n==1)
1.1 move disc from P1 to P3
2. else

2.1 Recursively move top (n-1) discs from P1 to P2 using P3 as intermediate i.e.,
Tower(n-1, P1, P3, P2)

2.2 Move disc from P1 to P3
2.3 Recursively move top (n-1) discs from P2 to P3 using P1 as intermediate i.e.,
Tower(n-1, P2, P1, P3)
3. End

To give an understanding of this strategy, the configuration of discs at different stages of the
game are given in the next page!, for n = 4. Suppose there are 2t + 1 disc movements in
total.

thttp:/ /zylla.wipos.p.lodz.pl/games /hanoi4e.html

The initial configuration of discs is as follows.

After t steps, the configuration is as follows.

After t+1 steps, the configuration becomes as shown in the figure below.

After 2t+1 steps, the final configuration is as follows.

Unwinding the recursion for n=3

The working of the above recursive algorithm with input n=3 is explained below.

Step 1: The main() function calls the function Tower () with parameters n=3, P1, P2 and P3 in
that order (i.e., Tower (3, P1, P2, P3) is invoked). Excluding the main() function,
the stack frame in the memory is as shown below.

fourth parameter P3
third parameter P2
stack frame 1
second parameter Pl
first parameter 3]

Step 2: The execution of Tower (3, P1, P2, P3) starts. Since n # 1, the program control
goes inside the else statement and in line 2.1 a call to the recursive function Tower ()
is made with its parameters n=2, P1, P3 and P2 in that order i.e., Tower (2, P1, P3,
P2) gets invoked.

Tower (3, P1, P2, P3)

2.1
\—» Tower (2, P1, P3, P2)

The stack frame in memory (except the stack frame of main) is as shown in the figure
below.

fourth parameter P2
third parameter P3
stack frame 2
second parameter P1
first parameter 2

fourth parameter P3

third parameter P2 .
stack frame 1

second parameter P1

first parameter

Step 3: The execution of Tower (2, P1, P3, P2) starts and again the if condition is false
and in line 2.1, the function Tower () is called with parameters n=1, P1, P2 and P3 in
that order i.e., Tower (1, P1, P2, P3) is invoked.

Tower (3, P1, P2, P3)

2.1
L Tower (2, P1, P3, P2)

2.1
}—> Tower (1, P1, P2, P3)

The memory stack frame diagram (except the stack frame of main) is as shown below.

fourth parameter P3
third parameter P2
stack frame 3
second parameter P1
first parameter 1
fourth parameter P2
third parameter P3
stack frame 2
second parameter P1
first parameter 2
fourth parameter P3
third parameter P2
stack frame 1
second parameter Pl
first parameter 3]

Step 4: Now, Tower (1, P1, P2, P3) starts executing and the condition if (n==1) becomes
true. In line 1.1, the instruction is to move the disc from the second parameter to the
fourth parameter i.e., from P1 to P3. After this, the program control moves to line 3
and this finishes the execution of Tower (1, P1, P2, P3) and the program control is
returned to the calling function Tower (2, P1, P3, P2).

Tower (3, P1, P2, P3)

2.1
L Tower (2, P1, P3, P2)

21 1.1 sve disc from P1 to P3
Tower (1’ P]_’ P2, P3) 3 Hégzi(‘ disc Irom (0]

The memory stack frame diagram (except the stack frame of main) is as shown below.

fourth parameter P2 o]
third parameter P3
stack frame 2
second parameter P1
first parameter 2]
fourth parameter P3 o
third parameter P2
stack frame 1
second parameter Pl
first parameter 3]

Step 5: Now, the program control is in the function Tower (2, P1, P3, P2) and the program
execution continues from line number 2.2 and in this step, a disc is moved from the
second parameter to the fourth parameter of the function call Tower (2, P1, P3, P2)
i.e., from P1 to P2.

Tower (3, P1, P2, P3)

2.1
L Tower (2, P1, P3, P2)

2.1 . E
1.1 re disc fr P1 to P3
Tower (1, P1, P2, P3) |3 P
-
—> 2.2 move disc from P1 to P2

Step 6: After this step, in line number 2.3 of Tower (2, P1, P3, P2), the recursive call to
Tower () is made with parameters n=1, P3, P1 and P2 in that order i.e., Tower (1, P3,
P1, P2) is invoked.

Tower (3, P1, P2, P3)

2.1
L Tower (2, P1, P3, P2)

21 . a
1.1 re disc from P1 to P3
: Tower (1, P1, P2, P3) L ncx;l)zle disc from o
e |22 move disc from P1 to P2
2.3
| » Tower (1, P3, P1, P2)

The memory stack frame diagram (except the stack frame of main) is as shown below.

fourth parameter P2
third parameter P1
stack frame 3
second parameter P3
first parameter 1
fourth parameter P2
third parameter P3
stack frame 2
second parameter P1
first parameter 2
fourth parameter P3
third parameter P2
stack frame 1
second parameter Pl
first parameter 3]

Step 7: Now, Tower (1, P3, P1, P2) starts executing and the condition if (n==1) becomes
true. In line 1.1, the instruction is to move the disc from the second parameter to the
fourth parameter i.e., from P3 to P2. After this, the program control moves to line 3
and this finishes the execution of Tower (1, P3, P1, P2) and the program control is
returned to the calling function Tower (2, P1, P3, P2) to line 3.

Tower (3, P1, P2, P3)

2.1
L Tower (2, P1, P3, P2)

21 1.1 e disc from P1 to P3
: Tower (1, P1, P2, P3) 3 121(1)216 e from ©
L |22 move disc from P1 to P2

2.3 1.1 move disc from P3 to P2
| » Tower (1, P3, P1, P2) 3 end i o0
-

»3 end

The memory stack frame diagram (except the stack frame of main) is as shown below.

fourth parameter P2]
third parameter P3
stack frame 2
second parameter P1
first parameter 2]
fourth parameter P3]
third parameter P2
stack frame 1
second parameter Pl
first parameter 3]

[Step 8:] After this, line 3 in Tower (2, P1, P3, P2) is executed and program control
returns to the calling function Tower (3, P1, P2, P3).

Tower (3, P1, P2, P3)

2.1

—» Tower (2, P1, P3, P2)
2.1 1.1 move disc from P1 to P3
—» Tower (1, P1, P2, P3) 3 end
-
L 2.2 move disc from P1 to P2
2.3 1.1 re disc from P3 to P2
| s Tower (1, P3, P1, P2) L n(‘lg?ri(, disc from to
- i

< »5 end

The memory stack frame diagram (except the stack frame of main) is as shown below.

fourth parameter P3]
third parameter P2
stack frame 1
second parameter Pl
first parameter 3

10

Step 9: Now, the program control is in the function Tower (3, P1, P2, P3) and the program
execution continues from line number 2.2 and in this step, a disc is moved from the
second parameter to the fourth parameter of the function call Tower (3, P1, P2, P3)

i.e., from P1 to P3.

Tower (3, P1, P2, P3)

A

2.1
» Tower (2, P1, P3, P2)
2.1 A e f]
1.1 re disc from P1 to P3

s+ Tower (1, P1, P2, P3) L nelgzio disc from o
-
e |22 move disc from P1 to P2

2.3 Tower (1, P3, P1, P2) 1.1 move disc from P3 to P2
- [it 3 end

3

—» end

2.2

move disc from P1 to P3

Step 10: After this step, in line number 2.3 of Tower (3, P1, P2, P3), the recursive call to
Tower () is made with parameters n=2, P2, P1 and P3 in that order i.e., Tower (2, P2,

P1, P3) is invoked.

Tower (3, P1, P2, P3)

2.1
» Tower (2, P1, P3, P2)
2.1 1.1 move disc from P1 to P3
—» Tower (1, P1, P2, P3) 3 end
-
e |22 move disc from P1 to P2
33 11 e disc from P3 to P2
<« Tower (1, P3, P1, P2) L move disc from P3 to P2
end
3
-< —» end
| 2.2 move disc from P1 to P3
2.3

L+ Tower (2, P2, P1, P3)

11

The memory stack frame diagram (except the stack frame of main) is as shown below.

fourth parameter P3
third parameter P1
stack frame 2
second parameter P2
first parameter 2
fourth parameter P3
third parameter P2
stack frame 1
second parameter Pl
3

first parameter

Step 11: The execution of Tower (2, P2, P1, P3) starts and the if condition is false and in
line 2.1, the function Tower () is called with parameters n=1, P2, P3 and P1 in that
order i.e., Tower (1, P2, P3, P1) is invoked.

Tower (3, P1, P2, P3)

2.1
» Tower (2, P1, P3, P2)
2.1 1.1 move disc from P1 to P3
+— Tower (1, P1, P2, P3) 3 end
.
Ly |22 move disc from P1 to P2
2. 11 e disc from P3 to P2
1> Tower (1, P3, P1, P2) L 12;1):16 disc from P3 to P2
le—
3
< —» end
| 2.2 move disc from P1 to P3
2.3

L+ Tower (2, P2, P1, P3)

2.1
L Tower (1, P2, P3, P1)

12

The memory stack frame diagram (except the stack frame of main) is as shown below.

fourth parameter P1
third parameter P3
stack frame 3
second parameter P2
first parameter 1
fourth parameter P3
third parameter P1
stack frame 2
second parameter P2
first parameter 2
fourth parameter P3
third parameter P2
stack frame 1
second parameter Pl
first parameter 3]

Step 12: Now, Tower (1, P2, P3, P1) starts executing and the condition if (n==1) becomes
true. In line 1.1, the instruction is to move the disc from the second parameter to the
fourth parameter i.e., from P2 to P1. After this, the program control moves to line 3
and this finishes the execution of Tower (1, P2, P3, P1) and the program control is
returned to the calling function Tower (2, P2, P1, P3).

Tower (3, P1, P2, P3)

2.1
» Tower (2, P1, P3, P2)
2.1 - p]
1.1 re disc from P1 to P3
s Tower (1, P1, P2, P3) L nel;;zl(disc from 0
-
L |22 move disc from P1 to P2
2.3 1.1 re disc from P3 to P2
| '» Tower (1, P3, P1, P2) L move disc from P3 to
P end
< -3 end
| 22 move disc from P1 to P3
2.3

——» Tower (2, P2, P1, P3)

2.1 1.1 e disc from P2 to P1
Tower (1’ P2’ P3, Pl) 3 nel;;zl(disc Irrom (o)

13

The memory stack frame diagram (except the stack frame of main) is as shown below.

fourth parameter P3
third parameter P1
stack frame 2
second parameter P2
first parameter 2
fourth parameter P3
third parameter P2
stack frame 1
second parameter Pl
3

first parameter

Step 13: Now, the program control is in the function Tower (2, P2, P1, P3) and the program
execution continues from line number 2.2 and in this step, a disc is moved from the
second parameter to the fourth parameter of the function call Tower (2, P2, P1, P3)
i.e., from P2 to P3.

Tower (3, P1, P2, P3)

2.1
I-» Tower (2, P1, P3, P2)
2.1 i - .
1.1 e disc fi P1 to P3
7: Tower (1, P1, P2, P3) L 121(1)(\19 disc from 0
| 2.2 move disc from P1 to P2
2.3 1.1 /e disc from P3 to P2
< Tower (1, P3, P1, P2) 1. move disc from P3 to
-+ 3 end
3
< % end
| 2.2 move disc from P1 to P3
2.3

—» Tower (2, P2, P1, P3)

2.1 1.1 e disc from P2 to P1
Tower (1’ P2, P3’ Pl) 3 121(1)21‘ disc Irom (0]
-
2.2 move disc from P2 to P3

14

Step 14: After this step, in line number 2.3 of Tower (2, P2, P1, P3), the recursive call to
Tower () is made with parameters n=1, P1, P2 and P3 in that order i.e., Tower (1, P1,

P2, P3) is invoked.

Tower (3, P1, P2, P3)

2.1
I-» Tower (2, P1, P3, P2)
2.1 1.1 move disc from P1 to P3
: Tower (1, P1, P2, P3) 3 end
L |22 move disc from P1 to P3
2. 1.1 ove disc from P1 to P3
| > Tower (1, P3, P1, P2) L move disc from 0 P
e end
- »3 end
| 2.2 move disc from P1 to P3
2.3

.+ Tower (2, P2, P1, P3)

21 1.1 move disc from P1 to P3
1> Tower (1, P2, P3, P1) 3 end
— 2.2 move disc from P1 to P3

2.3
—» Tower (1, P1, P2, P3)

15

The memory stack frame diagram (except the stack frame of main) is as shown below.

fourth parameter P3]
third parameter P2 stack frame 3
second parameter P1
first parameter 1]
fourth parameter P3 T
third parameter P1
stack frame 2
second parameter P2
first parameter 2]
fourth parameter p3]
third parameter P2
stack frame 1
second parameter Pl
first parameter 3]

16

Step 15: Now, Tower (1, P1, P2, P3) starts executing and the condition if (n==1) becomes
true. In line 1.1, the instruction is to move the disc from the second parameter to the
fourth parameter i.e., from P1 to P3. After this, the program control moves to line 3
and this finishes the execution of Tower (1, P1, P2, P3) and the program control is
returned to the calling function Tower (2, P2, P1, P3) to line 3.

Tower (3, P1, P2, P3)

2.1
» Tower (2, P1, P3, P2)
2.1 e E
1.1 re disc f P1 to P3
s Tower (1, P1, P2, P3) X 123219 disc from o
-
Ly |22 move disc from P1 to P2
2.3 11 e disc from P3 to P2
| » Tower (1, P3, P1, P2) ¥ mozle disc from P3 to
- en
< Y end
| 22 move disc from P1 to P3
2.3
L+ Tower (2, P2, P1, P3)
2.1 11 e disc from P2 to P1
> Tower (1, P2, P3, P1) X nclral)zle disc from o
T 2.2 move disc from P2 to P3
2.3
> Tower (1, P1, P2, P3) }9).1 move disc from P1 to P3
- end
»3 end

The memory stack frame diagram (except the stack frame of main) at this point is as
shown below.

fourth parameter P3
third parameter P1
stack frame 2
second parameter P2
first parameter 2
fourth parameter P3
third parameter P2
stack frame 1
P1

second parameter

first parameter

17

Step 16: Now, Tower (2, P2, P1, P3) finishes its execution by executing line number 3 and
the program control is in turn transfered to line number 3 of Tower (3, P1, P2, P3).

Tower (3, P1, P2, P3)

2.1
» Tower (2, P1, P3, P2)
2.1 1.1 move disc from P1 to P3
= Tower (1, P1, P2, P3) 3 end
-
L» |22 move disc from P1 to P2
23 11 ove disc from P3 to P2
| » Tower (1, P3, P1, P2) v m()\le disc from P3 to
e end
< % end
| 2.2 move disc from P1 to P3
2.3
+—» Tower (2, P2, P1, P3)
21 1.1 move disc from P2 to P1
+» Tower (1, P2, P3, P1) 3 end
- >
T 2.2 move disc from P2 to P3
2.3
| » Tower (1’ P1, P2, P3) %)).1 move disc from P1 to P3
- end
3% end

The memory stack frame diagram at this point (except the stack frame of main) is as
shown below.

fourth parameter P3]
third parameter P2
stack frame 1
second parameter P
first parameter 3]

18

Step 17: Now, Tower (3, P1, P2, P3) finishes its execution by executing line number 3.

Tower (3, P1, P2, P3)

2.1
-» Tower (2, P1, P3, P2)
2.1 . :
1.1 re disc from P1 to P3
s Tower (1, P1, P2, P3) L uégzio disc from o
-
L |22 move disc from P1 to P2
2.3 1.1 re disc from P3 to P2
Ls Tower (1, P3, P1, P2) L m()zl(, disc from to
le— en
< 3 end
— | 2.2 move disc from P1 to P3
2.3
——» Tower (2, P2, P1, P3)
2.1 1.1 e disc from P2 to P1
+» Tower (1, P2, P3, P1) 3 Hégz{‘ cuse from o
pe
T— 2.2 move disc from P2 to P3
2.3
> Tower (1, P1, P2, P3) %.1 move disc from P1 to P3
- end
i end
3
- end

After this, the program control is transfered to the function main(). The sequence of disc
movements are indicated in the figure in Red color, the order of movements can be obtained
by reading the Red lines in the figure from top to the bottom order.

Proof of Correctness

The proof of correctness of the above recursive algorithm for the Tower of Hanoi problem
can be done using the method of mathematical induction.

We will prove a more generalized statement about the algorithm, where there could be
more than n discs on the poles. We will prove the following statement:

S(n): Tower(n, P1, P2, P3) moves the top n discs from P1 to P3 keeping all rules of
the Towers of Hanoi game without moving any other discs other than these n discs at any of
the intermediate stages.

Base Case (n=1): From the algorithm, it is clear that for n = 1, the solution keeps

all rules of the game, it terminates and the objective is achieved. It can be easily verified
that S(n) is true for n=1.

19

Induction hypothesis: Let k& > 1 be any fixed integer and assume that S(n) is true
for all n < k.

Inductive step: Consider the statement S(n) for n = k. Suppose a call to the func-
tion Tower(n, P1, P2, P3) is made with n = k.

In step 2.1, the algorithm calls Tower(n-1, P1, P3, P2). By induction hypothesis S(k—1),
this step moves the top k—1 discs (i.e., the smaller k—1 discs) from P1 to P2 keeping all rules
of the Towers of Hanoi game without moving the largest disc at all in any of the intermediate
stages. By induction hypothesis, among the & — 1 discs getting moved, a larger disc is never
placed on top of a smaller disc. Hypothesis also guarantees that the largest disc is never
moved. So, the largest disc remains at the bottom of P1 and it is never placed on top of any
other disc. At some intermediate stages, some discs may get placed over the largest disc on
P1. But, this does not violate any rules of the game. After completing Step 2.1, only the
largest disc is there in P1. All other £ — 1 discs are in P2, in the increasing order of their
radius, from top to bottom. Pole P3 is empty.

In step 2.2, the top disc from pole P1 (which is the largest disc) is moved to pole P3.
This step is a valid move and it does not violate any rules of the game. After this step, pole
P1 is empty, the largest disc is on P3, and all other £ — 1 discs are in P2, in the increasing
order of their radius, from top to bottom.

In step 2.3, the algorithm calls Tower(n-1, P2, P1, P3). By induction hypothesis S(k—1),
this step moves the top k—1 discs (i.e., the smaller k—1 discs) from P2 to P3 keeping all rules
of the Towers of Hanoi game without moving the largest disc at all in any of the intermediate
stages. By induction hypothesis, among the k£ — 1 smaller discs getting moved, a larger disc
is never placed on top of a smaller disc. Hypothesis also guarantees that the largest disc is
never moved. So, the largest disc remains at the bottom of P3 and it is never placed on top
of any other disc. Some discs get placed over the largest disc on P3. But, this is allowed, as
per the rules of the game. After completing Step 2.3, the largest disc remains at the bottom
of P3. and all the other £ — 1 smaller discs also get transferred from P2 to P3, and they will
be getting arranged in P3 in the increasing order of radius, from top to bottom. Thus, all k
discs get arranged in the required way in P3. Poles P1 and P, are empty.

This proves that S(n) is true for n = k as well. Hence by induction, S(n) is true for all
natural numbers n.

Implementation in C

A C program to solve Towers of Hanoi for an input n is given below.

#include<stdio.h>

void Tower(int, int, int, int);

void main()

{ int n, pl=1, p2=2, p3=3;
printf ("Enter the number of discs\n");
scanf ("%d", &n);

if (n <=0)
{ printf("no discs to move!\n");
return;
+
printf("--—----—---———-- Sequence of disc movements-——------———-------

Tower (n, pl, p2, p3);

20

void Tower(int n, int pl, int p2, int p3)

{
// To move n discs from pole pl to pole p3, using intermediate pole p2.
if (n==1)
{ printf("move disc from pole %d to pole %d \n",pl, p3);
return;
}
Tower (n-1,pl, p3, p2);
printf("move disc from pole %d to pole %d \n",pl, p3);
Tower(n-1,p2, pl, p3);
}

The output of the program for n=2 is given below.

Enter the number of discs

move disc from pole 1 to pole 2
move disc from pole 1 to pole 3
move disc from pole 2 to pole 3

The output of the program for n=3 is given below.

Enter the number of discs

move disc from pole 1 to pole 3
move disc from pole 1 to pole 2
move disc from pole 3 to pole 2
move disc from pole 1 to pole 3
move disc from pole 2 to pole 1
move disc from pole 2 to pole 3
move disc from pole 1 to pole 3

Some observations:

From the above two outputs, it can be easily noticed that there is some similarity in the
output of n=2 and the first three steps of the output for n=3. The only difference is in the
pole numbers. In the output for n=2, two discs are getting moved from Pole 1 to Pole 3,
using intermediate pole Pole 2. In the first three steps of the output for n=3, two discs are
getting moved from Pole 1 to Pole 2, using intermediate pole Pole 2. The first three steps of
n=3 can be obtained by swapping Pole 2 and Pole 3 in the output of n = 2.

In the same way, there is also some similarity in the last three steps of the output for n=3
and the output of n=2. Just as the above case, the difference is only in the pole numbers.
The first three steps of n=3 can be obtained by swapping Pole 1 and Pole 2 in the output of
n =2,

21

Number of moves

Since in the solution for n discs, there are two recursive calls to the algorithm with n — 1
discs (steps 2.1 and 2.3), and one move in step 2.2, the number of moves, M(n) used by our
algorithm to move n discs from Pole 1 to Pole 3 can be calculated by the following recursive
function.

1 n=1
M(n):{ 2M(n—1)+1 :n>1

This gives the closed form expression M(n) =2"—1,n > 1.

22

