(CS1100 - Lecture 7

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

Pointer arithmetic

Pointers support some arithmetic operations as well. If p is a pointer to an integer, the
instruction p=p+1 means, the current value of p (which is an address) is added with the
number of locations needed to store an integer and the result is put as the new value
of p. If i is an integer and p is a pointer to an integer, the expression p+i means the
address obtained by adding i X number of locations needed to store an integer
with current value of p. Similarly, p-i is also a valid expression. The instruction p=p+i
means the value of p (which is an address) changes to (current value of p) + (i X
number of locations needed to store an integer).

In an array declaration like int a[10], we already know the label a is not a variable,
but it is equivalent to an address, which is the address of a[0]. Recall that, a+i is the
address of a[i]. If we have an instruction p=a where, p is a pointer to an integer and a
is an array of integers, then by the explanation given in previous paragraph, a+i and p+i
are referring to the same address, which is, &a[i].

int a[3]
2000 a[0]
p=a; 2004 a[l]
2008 a[2]
5000 P 2000

As per the figure given above, p+2 is the address 2008, which is also &a[2] or a+2.

Now, let us consider an example program to understand the use of pointer arithmetic.

int *p, a[10];
al[0]=10;
al[1]=20;

p=a;

*p=*p+70;
*(p+2)=50;

Note that, the bracket on the left hand side of the last instruction is necessary because,
unary operator * has higher precedence than +,-,=, etc. Without brackets *p+2=50 is
not a valid instruction. This is because,*p+2 is only an integer value, not an address, and
therefore it can not occur on the left hand side of an assignment instruction. Also note
that, unary * and & are right associative.

After executing instructions upto p=a in the above program, the memory state diagram
of the execution is shown below.

2000 a[0] [| 10
int *p, a[10];
a[0]=10; 2001 1] 20
a[1]=20;
p=a; 2002 a[2]
— *p=xp+70;
*(pt+2)=50;
2009 a[9]
5000 p | 2000

The next instruction to execute is *p=*p+70. Note that, the * operation has a higher
precedence than the +,=,- operations. Now, since 2000 is the value of p, the expression
*p refers to the location with address 2000 (i.e. the location of a[0]). Therefore, when
the expression *p+10 is evaluated in CPU, the result is the sum of the current value
stored in location 2000 and the value 10, which is equal to 104+70=80. After executing
the instruction *p=*p+70 the value stored in location 2000 gets updated to 80. As a result
the value of a[0] changes to 80. The memory diagram after this stage is shown below.

2000 a[0] 80
int *p, a[10];
a[01=10; 2001 afl] 20
al11=20;
pma; 2002 af2]
*p=*p+70;
— *(p+2)=50;
2009 a[9]

5000 po | 2000

Now, next instruction to execute is *(p+2)=50. Here, p+2 is now same as the address
of a[2] because, p and a denote the same value 2000. Therefore, *(p+2) refers to a[2].

2

Hence, after executing * (p+2)=50, the value of a[2] changes to 50, as shown in the next
figure.

2000 alo] [] 80
int *p, a[10];
a[01=10; 2001 afl] 20
a[1]=20; 50
pea; 2002 af?2] 5
*p=*p+70;
*(p+2)=50;

2009 a[9]

5000 b | 2000

The following example is to demonstrate the close connection between pointers and
arrays in C.

#include<stdio.h>
int main()
{
int a[10], b, *p;
al0]=10;
al1]=20;
p=a;
*p = *p + 1;
printf ("al[0]=%d al[1]l=Yd *p=%d\n",al[0],al[1],*p);
pP=p+1;
*p = *p + 1;
printf ("a[0]=Yd al1l=}d *p=kd\n",al0],al1],*p);
*(p-1)=30;
printf("al0]=%d al1l=%d *p=Y%d\n",al0],al1],*p);
return(0) ;

After executing instructions upto p=a;, the memory state diagram is as shown below.

2000 a[0] 10
2001 a1 20
#include<stdio.h> 5
int main() 2002 a[]
{
int al10], b, *p; :
a[0]=10; 2009 a9
a[1]=20; 5000 p L 2000
p=a;

»*p=*p+1;
printf ("al0]=Vd a[1]=Vd *p=Vd\n",al[0],al1],*p);

p=p+1;

*p = *p + 1;
printf("al0]=%d al1l=%d *p=%d\n",a[0],al1],*p);
*(p-1)=30;

printf ("a[0]=%d al[1]l=Yd *p=d\n",al[0],a[1],*p);
return(0) ;

After executing instructions upto the first *p=+p+1;, the memory state diagram is as
shown below.

2000 a[0] ™ 11
2001 a[l] 20
#include<stdio.h>
int main() 2002 af2]
{
int afl10], b, *p; :
a[01=10; 2009 af9)
al[1]1=20; 5000 p L4 2000
p=a;
*p = *p + 1;
—» printf("al0]=%d al1l=%d *p=d\n",al0],al1],*p);
p=p+1;
*p=*p+1;
printf ("al0]=Y%d al1]l=d *p=%d\n",a[0],al1],*p);
*(p-1)=30;
printf ("a[0]=d al1]l=Vd *p=%d\n",al0],al1],*p);
return(0) ;
+

After execting first printf statement, output a[0]=11 a[1]1=20 *p=11 is displayed on

screen.

After executing instructions upto p=p+1;, the memory state diagram is as shown

below.

2000 a[0] 11
2001 a[l] ™ 20
#include<stdio.h>
int main() 2002 af2]
{
int a[10], b, *p; :
2[0]=10; 2009 al9]
a[1]=20; 5000 p 2001
p=a;
*p = *p + 1;

printf ("al0]=V%d al[1]l=%d *p=%d\n",al0],al[1],*p);
p=p+1;

*p:*p+1;

printf ("al[0]=Y/d al1]l=%d *p=%d\n",al[0],al1],*p);
*(p-1)=30;

printf ("al0]=%d al1l=%d *p=%d\n",a[0],al1],*p);
return(0);

After executing instructions upto the second *p=xp+1;, the memory state diagram is
as shown below.

2000 a[0] 11
2001 afl] ™ 21
#include<stdio.h>
int main() 2002 a[2]
{
int a[10], b, *p;
a[01=10; 2009 af9]
p=a;
*p = *p + 1;

—

}

printf ("a[0]=%d al1]l=d *p=%d\n",al[0],al[1],*p);
p=p*1;

*p=*p+1;

printf ("al0]=%d al1]l=%d *p=%d\n",al0],al1],*p);
*(p-1)=30;

printf ("al0]=Vd al1]l=%d *p=%d\n",a[0],al1],*p);
return(0) ;

After executing second printf, output a[0]=11 a[1]=21 *p=21 is displayed on screen.

The memory state diagram after executing instructions upto *(p-1)=30; is shown
below.

2000 a[0] 30
2001 a[l1] ™ 21
#include<stdio.h>
int main() 2002 a2]
{
int al[10], b, *p; :
a[01=10; 2009 al9]
a[1]=20; 5000 p b 2001
p=a;
*p = *p + 1;
printf ("a[0]=Vd al1]=%d *p=%d\n",al[0],al[1],*p);
p=p+1;
*p = *p + 1;
printf ("al[0]=d al1l=V%d *p=%d\n",al0],al1],*p);
*(p-1)=30;
— printf("al0]=Vd al1]l=%d *p=Yid\n",al[0],al[1],*p);
return(0) ;
}

After executing last printf, output a[0]1=30 a[1]=21 *p=21 is displayed on screen.

The following program is another example of simultaneous usage of pointers and ar-
rays.

int main()
{

int a[b], *p, 1i;

i=0;

while (i<5)

{
*x(a+i)=(i+1)*10;
i=i+1;

}

i=0;

while(i<5)

{
printf ("al%d]=)d\n",i, alil);
i=i+1;

}

p=a;

i=0;

while (i<5)

{
printf ("*(p+%d)=%d *(at+%d)=%d\n",i, *(p+i), i, *(a+i));
i=i+1;

}

1=0;

while (i<5)

{
(p+i)=(p+i)-5;
i=i+1;

}

1=0;

while (i<5)

{
printf ("al%dl=ld plkdl=%d \n",i, alil,i,plil);
i=i+1;

}

return(0) ;

The memory state diagram of the above program after executing instructions upto
p=a; is shown below.

#include<stdio.h>
int main() 2000 a0
{
int als], *p, i; 2001 a[l]
i=0; 2002 au[
while(i<5) 2003 RB] 40
{
*(a+1)=(i+1)*10; 2004
i=i+1; 5000 P 2000

}
i=0;
while(i<5)
{
printf("al[kdl=Vd\n",i, alil);
i=i+1;
}
p=a;
— i=0;
while(i<5)
{
printf ("x(p+%d)=%d *(a+%d)=%d\n",i, *(p+i), i, *(a+i));
i=i+1;
}
i=0;
while(i<5)
{
(p+i)=(p+i)-5;
i=i+1;
}
i=0;
while(i<5)
{
printf ("al[%dl=%d p[kdl=%d \n",i, alil,i,plil);
i=i+1;
}

return(0);

5000 i 5

}

The memory state diagram after executing the fourth while loop is given below.

#include<stdio.h>

int main() 2000 a[O] >
{

int a[b6], *p, 1i; 2001 afl] 15
i=0; 2002 af2) 25
while(i<5b)
{

% (a+i)=(i+1)*10; 2004 af

i=it+l; 5000 P 2000

2003 al3] 35

i .
i=0; 5001 1 5
while(i<5)
{
printf ("a[kd]=Vd\n",i, alil);
i=i+1;
}
p=a;
i=0;
while(i<5)
{
printf ("x(p+%d)=%d *(a+%d)=%d\n",i, *(p+i), i, *(a+i));
i=i+1;
}
i=0;
while(i<5)
{
*(p+i)=k(p+i)-5;
i=i+1;
}
—» 1=0;
while(i<5)
{
printf("al¥%dl=Vd p[%d]=¥d \n",i, alil,i,plil);
i=i+l;
}

return(0) ;

The output of the above program is as follows.

al[0]=10

al[1]=20

a[2]=30

a[3]=40

a[4]=50

*(p+0)=10 *(a+0)=10
*(p+1)=20 *(a+1)=20
*(p+2)=30 *(a+2)=30
*(p+3)=40 *(a+3)=40
*(p+4)=50 *(a+4)=50
al0]=5 p[0]=5
a[1]=15 p[1]=15
a[2]=25 p[2]=25
a[3]=35 p[3]=35
a[4]=45 p[4]=45

10

