
CS1100 - Lecture 12

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

In the last class, we were discussing two-dimensional arrays. We know that all elements
of a two-dimensional array are stored in contiguous memory locations. Elements in Row
0 are stored first, followed by elements in Row 1 and so on. We also know that we
can explicitly refer to the address of each row. This is one major advantage of having
two-dimensional arrays, over single dimensional arrays. Any element of an array can be
accessed by varying the index. In the case of two-dimensional arrays, we have two indices,
each of which can be varied independently.

If we have an array of integers int a[4][3], we have seen that a[0], a[1], a[2]

and a[3] are themselves single dimensional arrays. Each of them is a single dimensional
array of 3 integer values. For example, a[1] is a single dimensional array of integers, whose
elements are a[1][0], a[1][1], a[1][2]. Just as the name of a single dimensional
array represents the address of the first element of the array, a[0], a[1], a[2], a[3]

also represent addresses. The expression a[0] represents the address of the first element
in 0th row, i.e., &a[0][0]. In general, the expression a[i] corresponds to &a[i][0].

We have a related concept called array of pointers, which will be explained in the
following section.

Array of pointers

We already know that the declaration int *p; means that p is a variable, which is a
pointer to a memory location holding an integer value; i.e. the value of p is the address
of some other integer variable. Similarly, we can declare an array of pointers, where the
value of each array element is the address of an integer variable.

The declaration int *ptr[4]; means, ptr is an array of 4 pointers, where each ele-
ment of ptr can store the address of an integer variable. That is, the values of ptr[0],
ptr[1], ptr[2], ptr[3] are addresses of some locations storing integer values.

Suppose, we have an array of pointers declared as int *ptr[4]; and a two-dimensional
array declared as int a[4][3];. The instruction ptr[0]=a[0] is valid. Because ptr[0]

can hold an address of an integer variable and a[0] denote &a[0][0], which is the address
of an inter variable. The value of ptr[0] can be changed by assigning new values, but
the value of a[0] cannot be changed, because a[0] is not a variable.

Consider the following code segment:

int *ptr[4], a[4][3];

ptr[0]=a[0];

ptr[1]=a[1];

ptr[2]=a[2];

ptr[3]=a[3];

1



After the initial declarations, the contents of memory locations are as follows.

a[0][0]2000

a[0][1]2004

a[0][2]2008

a[1][0]200C

a[1][1]2010

a[1][2]2014

a[2][0]2018

a[3][2]202C

.

.

ptr[0]3000

ptr[1]3008

ptr[2]3010

ptr[3]3018

After executing the statement ptr[0]=a[0], the address of the first element of Row 0
(i.e., &a[0][0]) is stored as the value of ptr[0]. The contents of memory locations after
executing statement ptr[0]=a[0] are given in the following figure.

a[0][0]2000

a[0][1]2004

a[0][2]2008

a[1][0]200C

a[1][1]2010

a[1][2]2014

a[2][0]2018
.

.

2000

a[3][2]202C

ptr[0]3000

ptr[1]3008

ptr[2]3010

ptr[3]3018

a[3][1]2028

a[3][0]2024

2



After executing the statement ptr[1]=a[1], the value of ptr[1] becomes the address
of the first element in Row 1, i.e. &a[1][0]. The following figure shows the contents of
various memory locations after the execution of all the statements:

a[0][0]2000

a[0][1]2004

a[0][2]2008

a[1][0]200C

a[1][1]2010

a[1][2]2014

a[2][0]2018

a[3][2]202C

.

.

ptr[0]3000

ptr[1]3008

ptr[2]3010

ptr[3]3018

2000

200C

a[3][1]2028

a[3][0]2024

2018

2024

The following program gives an example of using an array of pointers to access the
elements of a two-dimensional array.

#include<stdio.h>

int main()

{

int i, j, *ptr1[3];

/* ptr1 is an array of 3 pointers.

The values of ptr1[0], ptr1[1], ptr1[2] are addresses. */

int a[3][4]={{1, 2, 3, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}};

for(i=0; i<3; i++)

{

ptr1[i]=a[i];

}

for(i=0; i<3; i++)

{

for(j=0; j<4; j++)

{

printf("%2d ", *(ptr1[i]+j) );

}

3



printf("\n");

}

return 0;

}

As we discussed, when the instruction ptr1[i]=a[i]; is executed, the value of ptr1[i]
becomes the address of the first element of row i, i.e., &a[i][0]. This instruction is
executed in a loop as follows:

for(i=0; i<3; i++)

{

ptr1[i]=a[i];

}

After executing the above loop, for i = 0, 1, 2, the ith element of the array ptr1 stores the
address of the first element of row i of a, i.e, &a[i][0].

At this stage, the expression ptr1[i]+j has the same value as &a[i][0] + j ×
number of locations required to store one integer. This is same as the address
of &a[i][j]. Therefore, *(ptr1[i]+j) is the same as a[i][j].

From the above explanation, it is now clear that the following code will display the
elements of the two- dimensional array a in the form of a 3 × 4 matrix.

for(i=0; i<3; i++)

{

for(j=0; j<4; j++)

{

printf("%2d ", *(ptr1[i]+j) );

}

printf("\n");

}

After executing the above parts of the code, the matrix will be displayed as follows.

1 2 3 4

5 6 7 8

9 10 11 12

Pointer to an array

In this section, we will look at the concept of a pointer to an array of integers. If we
have a declaration int (*ptr1)[4];, then ptr1 is a pointer to an array of four integers.
This means, the value of ptr1 will be an address (i.e., the starting address) of an array
containing four integers. For example, if we also have another declaration int b[4];,
then the instruction ptr1 = &b; is valid. After executing this instruction, the starting
address of the array b will become the value of the pointer variable ptr1.

4



Arithmetic operations on a pointer to an array

If ptr1 is declared as above, and we have an instruction ptr1 = ptr1 + 1;, then the
new value of ptr1 becomes old value of ptr1 + number of locations required to

store an array of 4 integers. This new value is equal to old value of ptr1 + 4

× number of locations required to store an integer. Similarly, other arithmetic
operations can also be done on a pointer to an array.

Example of using a pointer to an array of integers

The following example shows accessing the elements of a two-dimensional array of integers
using a pointer to an array.

#include<stdio.h>

int main()

{

int i, j, (*ptr1)[4];

//ptr1 is a pointer to an array of 4 integers.

int a[3][4]={{1, 2, 3, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}};

ptr1 = &a[0];

for(i=0; i<3; i++)

{

for(j=0; j<4; j++)

{

printf("%2d ", *(*ptr1+j) );

}

printf("\n");

ptr1 = ptr1 + 1;

}

return 0;

}

5



Suppose the array elements are stored from memory address 2000 onwards. After the
array initialization, the contents of memory locations are as given in the figure below:

a[0][0]2000

a[0][1]2004

a[0][2]2008

a[1][0]

200C

a[1][1]

2010

a[1][2]

2014

a[1][3]

2018

2020

ptr14000

a[0][3]

201C

a[2][0]

a[2][1]

a[2][2]

2024

a[2][3]

2028

202C

1

2

3

5

6

7

8

9

10

11

12

4

3000

3004

i

j

6



When the statement ptr1 = &a[0]; is executed, the value of ptr1 gets updated to
2000, which is the address of a[0]. After executing this step, the contents of memory
locations are as shown in the figure below.

a[0][0]2000

a[0][1]2004

a[0][2]2008

a[1][0]

200C

a[1][1]

2010

a[1][2]

2014

a[1][3]

2018

2020

ptr14000

a[0][3]

201C

a[2][0]

a[2][1]

a[2][2]

2024

a[2][3]

2028

202C

1

2

3

5

6

7

8

9

10

11

12

4

3000

3004

i

j

2000

Consider the point of execution when the control reaches the line
printf("%2d ", *(*ptr1+j) ); for the first time. Since ptr1 has value &a[0], the
expression *ptr1 stands for a[0], which is same as &a[0][0]. Therefore, *ptr1+j stands
for &a[0][j] and *(*ptr1+j) stands for a[0][j]. For the first time when the line is
executed, the values of j is zero and so, the value of a[0][0] will be printed.

Now, consider the inner loop:

for(j=0; j<4; j++)

{

printf("%2d ", *(*ptr1+j) );

}

While executing this loop, the value of j changes from 0 to 3. Since, *(*ptr1+j) stands
for a[0][j], when j sages from 0 to 3 in this loop, the values of a[0][0], a[0][1],

a[0][2], a[0][3] gets printed.
Therefore, when the program control comes out of the above loop for the first time,

the following is displayed on the screen.

1 2 3 4

Recall that, at this point, the value of ptr1 is 2000, which is the address of a[0]. When
the line ptr1 = ptr1 + 1; is executed during the first iteration of the outer for-loop, the
value of ptr1 becomes 2000 + number of locations required to store an array

7



of 4 integers. As per our figure, number of locations are required to store an ar-
ray of 4 integers is 16. Therefore, the new value of ptr1 will be 2000 + 16. Since we
have expressed addresses in hexadecimal, the new value of ptr1 will be 2010, which is
&a[1] (note that 2000 + 16 = 2010 in hexadecimal).

After executing the instruction ptr1 = ptr1 + 1; in the first iteration of the outer
for-loop, the contents of memory locations are as shown in the figure below.

a[0][0]2000

a[0][1]2004

a[0][2]2008

a[1][0]

200C

a[1][1]

2010

a[1][2]

2014

a[1][3]

2018

2020

ptr14000

a[0][3]

201C

a[2][0]

a[2][1]

a[2][2]

2024

a[2][3]

2028

202C

1

2

3

5

6

7

8

9

10

11

12

4

2010

3000

3004

i

j

Now, the second iteration of the outer for-loop begins. Once again, the following
inner loop is executed:

for(j=0; j<4; j++)

{

printf("%2d ", *(*ptr1+j) );

}

Since ptr1 has value &a[1], *ptr1 is a[1], which is same as &a[1][0]. Therefore,
(*ptr1+j) is same as &a[1][j] and *(*ptr1+j) stands for a[1][j]. While executing
this loop, the value of j changes from 0 to 3. Since, *(*ptr1+j) stands for a[1][j],
when j changes from 0 to 3 in this loop, the values of a[1][0], a[1][1], a[1][2],

a[1][3] gets printed.
Therefore, when the program control comes out of the above loop for the second time,

elements of the second row of the two-dimensional array gets printed. The execution
proceeds in a similar way, and the final output printed will be:

1 2 3 4

5 6 7 8

9 10 11 12

8



Some comments about compatibility of types

Suppose we have the following instructions in a program.

int *ptr[3], a[3][4], (*ptr1)[4];

ptr[0] = a[1];

ptr1 = &a[1];

From our discussions, it can be seen that the above set of instructions are valid: If we
compile the above code, it will compile without any warnings.

However, note that compiling the following program will cause some compiler gener-
ated warnings about both the assignment instructions in the program.

int *ptr[3], a[3][4], (*ptr1)[4];

ptr[0] = &a[1];

ptr1 = a[1];

Let us consider the instruction ptr[0] = &a[1];. Here, since ptr[0] is a pointer to an
integer, the address to be stored as the value ptr[0] has to be the address of an integer.
However, the right hand side of the instruction is &a[1]. Since a[1] is an array of 4

integers, &a[1] is the address of an array of 4 integers. This is different in type from an
address of an integer. This is the reason for the compiler warning generated about the
instruction ptr[0] = &a[1];

Similarly, in the instruction ptr1 = a[1];, the variable on the left side is a pointer
to an array of 4 integers, the value assigned to ptr1 should have been the address of an
array of 4 integers. However, the right hand side of the instruction is a[1] (or &a[1][0]),
which is the address of an integer. Since a[1] represents the address of an integer, its type
is different from an address of an array of integers. This is the reason for the compiler
warning generated about the instruction ptr1 = a[1];

Matrix multiplication

A matrix of order m×n has m rows and n columns. If we want to multiply two matrices,
the number of columns in the first matrix should be equal to the number of rows in the
second matrix. Otherwise, multiplication is not defined. Suppose we have a 3×4 matrix

A=




1 2 3 4
8 2 8 7
3 5 1 3




and another matrix B of order 4×2.

B=




5 8
2 3
1 7
4 2




9



The product matrix C = A × B of order 3×2 obtained by multiplying matrix A and
B is of the form

C=



C00 C01

C10 C11

C20 C21




Consider an element C10 in the matrix C. For calculating C10, elements of the row 1
of matrix A are multiplied with the corresponding element in the 0th column of B; and
the products obtained are summed up together.




5 8
2 3
1 7
4 2







1 2 3 4
8 2 8 7
3 5 1 3




A= B=

C10 = 8 ∗ 5 + 2 ∗ 2 + 8 ∗ 1 + 7 ∗ 4
The expression C10 = A10 ∗B00 +A11 ∗B10 +A12 ∗B20 +A13 ∗B30 calculates the value

of the element C10. In general, if A is a matrix of order m× n and B is a matrix of order
n× p and C = A × B, then following expression calculate the value of Cij:

Cij = Ai0 ∗B0j + Ai1 ∗B1j + Ai2 ∗B2j + Ai3 ∗B3j + ... + Ai(n−1) ∗B(n−1)j

Note that, each term in the summation on RHS have i as the row index of the element
of A and j as the column index of the element of B. Moreover, from term to term, the
column index of the element of A and the row index of the element of B vary from 0 to
n− 1.

We can use the following code to compute the value of Cij:

result=0;

for(k=0; k<n; k++)

{

result= result+a[i][k]*b[k][j];

}

After executing the above code, the variable result will store the value of Cij.

The following program is based on the idea developed above. This program illustrates
taking a row number row and a column number col as input from the user and computing
the value of the element with index [row][col] in the product of two matrices defined
in the program.

#include<stdio.h>

int main()

{

int a[3][4] ={{1, 2, 4, 5},

{2, 3, 1, 7},

{4, 2, 1, 3}};

10



int b[4][3] ={{5, 10, 15},

{2, 5, 7},

{4, 2, 6},

{9, 4, 3}};

int result, i, j,row,col, r1, c1, r2, c2, k;

r1=3;

c1=4;

r2=4;

c2=3;

printf("Matrix 1\n");

for(i=0; i<r1; i++)

{

for(j=0; j<c1; j++)

{

printf("%2d ", a[i][j]);

}

printf("\n");

}

printf("Matrix 2\n");

for(i=0; i<r2; i++)

{

for(j=0; j<c2; j++)

{

printf("%2d ", b[i][j]);

}

printf("\n");

}

printf("Give row and column of the element to display from product matrix \n");

printf("(assume index start from 0)\n");

scanf("%d%d",&row,&col);

if(row>=0 && row<r1 && col>=0 && col<c2 )

{

result=0;

for(k=0; k<c1; k++)

{

result= result+a[row][k]*b[k][col];

}

printf("result is %d\n", result);

}

else

printf("index out of range\n");

}

11


