
Exercise Problems - 11

Functions - 1

1. Write a recursive function gcd that takes two non-negative integers a and b, with a ≥ b
as input parameters and returns greatest common divisor of a and b, after computing
it using the following recursive definition:

gcd(a, b) =

{
gcd(b, a%b) : b > 0
a : b = 0

Write a program that takes two non-negative integers x and y as input from the user
and outputs the greatest common devisor of x and y using the gcd function developed
above. Your program should work even if x < y. What happens if the order of
parameters is changed in the recursive call inside the gcd function?

2. This exercise is intended to show you how a badly defined recursive function affects
the running time of a program. Let us consider three ways of implementing a function
Comb(n, r) that represents the number of different ways of choosing r items from a
collection of n distinct items, for 0 <= r ≤ n.

Method 1: The iterative method used in the solution of Question 2 of Quiz 2 (modify
to allow n <= 60).

Method 2: Use a recursive definition of the function using the following recursion.

Comb(n, r) =

{
Comb(n, r − 1) × (n− r + 1)/r : r > 0
1 : r = 0.

Method 3: Use a recursive definition of the function using the following recursion.

Comb(n, r) =

{
Comb(n− 1, r) + Comb(n− 1, r − 1) : 0 < r < n
1 : r = 0, r = n.

Write (three) programs that take n and r as inputs from the user and outputs the
value of Comb(n, r) computed using each of the methods given above. For values
of n = 60 and r = 30, compare the running time of these programs. How do you
explain your observations? If an arithmetic operation is counted as one elementary
step and returning a value to a calling function is also counted as one elementary step,
how many elementary steps are executed for computing Comb(60, 30) in each of the
above methods?

1


