(CS1100 - Lecture 27

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

User defined data types

So far, we were using standard data types provided by the language, like int, float, char
etc . and also the arrays of these different types. There are provisions for defining user
defined data types in C. In this lecture, we will discuss about user defined data types.
Let us begin with an example, suppose we want to manipulate the list of records related
to student data such as roll number, name, marks, total mark etc. . Using methods we
have studied so far, we will be defining different arrays for handling each of these different
fields of data and then access the data of each student using the array index value.
Eg:

int rollNo[150];
int mark1[150];
int mark2[150];
int total[150];
char name[150] ;

We were assuming that the i element in the rollNo array, the i element in the
mark1 array, the i element in the mark2 array, the i’* element in the total array and
the 7" element in the name array are all of the same person. But this assumption is
only there in the mind of the programmer. There is no apparent relation between these
arrays. This problem can be solved by using the concept of user defined data types called
structures. The basic syntax for defining a structure named student is given below.

struct student

{
int rollNo;
int markil;
int mark?2;
int total;
char name[50];

};

In the above syntax, struct is the keyword and student is the name of the structure.
The names rollNo, markl, mark2, total and name are known as member fields of the
structure student. Usually the declaration of a structure as given above is written before
the main () function.

Note that, student is not a variable here; it is only a name given to the structure to
represent the five fields rol1lNo, markl, mark2, total and name together as one unit.
The syntax to declare a variable s of type struct student is as follows.

struct student s;

This means that, s is a variable of type struct student.

How to store and access structure data

The dot (.) operator helps to store and access the structure fields. Suppose s is a
variable of type student. To refer to the member field rol1lNo of student s, we use the
notation s.rollNo. Similarly, s.markl, s.mark2, s.total, and s.name will represent
respectively the member fields markl, mark2, total and name of student s.

The following instruction helps to read a string from the terminal and store it to the
name field of the student s.

scanf ("%19s",s.name) ;

To change the roll number of student s to 101, we can use the following instruction.

s.rollNo=101;

If we declare a variable s of type struct student in a function, memory is allocated
for storing the variable s as shown in the figure below.

[3000 s.rollNo junk
3004 s.markl junk
S 3008 s.mark2 junk
3012 s.total Jjunk
L 3016 s.name junk
3066

Notice that, each member field of s has got an address of its own and they behave
like variables whose values can be accessed or modified seperately as mentioned earlier.
However, note that, s itself is a variable which has got an address and it can occur on the
left hand side of an assignment statement. As per the above figure, s is a variable with
address 3000 and it fills in locations up to 3065. This is completely different from arrays
because, array names are not variables, they just represent a group of variables.

Suppose, we have two variables s1 and s2 of type struct student and we make an
assignment statement s1=s2;. As per our discussion above, each of these variables occupy
66 bytes of memory. When this instruction is executed, the contents of the 66 bytes of
s2 are copied to occupy the 66 bytes used to store s1i.

Functions using structure variables

It is possible to define functions that return a structure variable. It is also possible to define
functions that take structure variables as parameters. Similarly, pointers to a structure
variable can also be returned from a function or taken as parameter to a function.

Let us see how to write a function inputStudentDetails() that takes the details of
a student as input from the terminal, store these details to a variable of type struct
student and returns this variable. This function can be declared as follows.

struct student inputStudentDetails();

The definition of this function can be written as follows.

struct student inputStudentDetails()
/*Input details of one student and return it */

{
struct student s;
printf ("\nGive roll number, name, markl, mark2 of student\n");
scanf ("%d", &s.rollNo);
scanf ("%14s", s.name);
scanf ("%d", &s.markl);
scanf ("%d", &s.mark?2);
return s;
}

This function is analogous to a function that reads an integer as input from the terminal
and returns it as follows.

int getInteger()

{ int k;
scanf ("%d", &k);
return k;

}

A function printStudentDetails() that takes a variable s of type struct student
as parameter and prints all the details of student s can be declared as follows.

void printStudentDetails(struct student);
This function can be defined as follows.

void printStudentDetails(struct student s)
/*Print details of student s */

{
printf ("%d\t", s.rollNo);
printf ("\t%s\t", s.name);
printf ("%d\t", s.markl);
printf ("%d\t", s.mark2);
printf ("%d\n", s.total);
}

The following main () function uses the function inputStudentDetails() to read val-
ues into structure variable s1 of type struct student and the function printStudentDetails ()
is used to display the details of s1.

int main()

{
struct student si;
sl=inputStudentDetails();
sl.total=sl.markl+sl.mark?2;
printStudentDetails(sl);
return (0);

}

Let us consider the execution of the above main() function. When main() function starts
executing, a stack frame gets created in memory which allocates space for the variable
s1. This variable will be used to store the data of a single student. The memory stack
diagram before the function inputStudentDetails() is invoked is given below.

2000 sl.rollNo junk

2004 sl.markl junk

sl 2008 sl.mark2 junk
2012 sl.total Jjunk
L 2016 sl.name junk

2066

When the function inputStudentDetails () is invoked, a new stack frame gets created
in the memory. Now, the memory state diagram is as follows.

[3000 s.rollNo Junk —
3004 s.markl junk
S 3008 s.mark2 Jjunk frame 2
3012 s.total Jjunk
L 3016 s.name junk]
3066
[2000 sl.rollNo junk
2004 sl.markl junk
sl 2008 sl.mark2 junk frame 1
2012 sl.total Jjunk
L 2016 sl.name junk
2066

The following figure shows the contents of the memory locations after executing all
the scanf instructions in the function inputStudentDetails() .

[3000

3004

3008

3012

L 3016

3066

[2000

2004

sl 2008

2012

L 2016

2066

s.rollNo

s.markl

s.mark2

s.total

s.name

sl.rollNo

sl.markl

sl.mark2

sl.total

sl.name

1124

21

32

junk

Anil

junk

junk

Jjunk

junk

junk

frame 2

frame 1

When the execution of the function inputStudentDetails () finishes by executing the
instruction return s;, the program control goes back to main() and at this time, since
s1 is on the left hand side of the function call to inputStudentDetails(), the contents
of the location of s are copied to the location of s1 and frame 2 is deleted. That is, the
66 bytes of data starting from location 3000 is copied to the 66 bytes of memory starting
from location 2000. At this point, the memory state diagram is as follows.

2000

2004

2008
sl

2012

L 2016

2066

sl.rollNo

sl.markl

sl.mark2

sl.total

sl.name

1124

21

32

junk

Anil

frame 1

After executing the statement s1.total=s1.marki+s1.mark?2; the value of s1.total
gets updated. At this point, the contents of the memory will be as follows.

[2000 sl.rollNo 1124
2004 sl.markl 21
sl 2008 sl.mark2 32 frame 1
2012 sl.total 52
2016 sl.name Anil

2066

When the function call printStudentDetails(s1); is invoked, a new frame is created
and the contents of the location of s1 will be copied to the location of s in the new frame.

[4000 s.rollNo 1124 —
4004 s.markl 921
s 4008 s.mark2 32 frame 2
4012 s.total 52
4016 s.name Anil]
4066
[2000 sl.rollNo 1124 I
2004 sl.markl 21
sl 2008 sl.mark2 32 frame 1
2012 sl.total 52
2016 sl.name Anil]
2066

When printStudentDetails is executed, the details of student s are printed. After
this, the function finishes its execution, frame 2 gets deleted and the program control goes
back to main(). At this point, the contents of the memory will be as follows.

[2000 sl.rollNo 1124
2004 sl.markl 21
sl 2008 sl.mark2 32 frame 1
2012 sl.total 52
2016 sl.name Anil

2066

After this, the main() function finishes execution.

Working with arrays of structures

The following instruction creates an array 1 of 10 elements of type struct student. This
array can store the details of 10 students.

struct student 1[10];

Consider the following updated structure definition and main() function declaration.

struct student

{ int roll;
unsigned int marks[2];
unsigned int total;
char name[15];

};

int main()
{

struct student 1[SIZE];
int i, n;
printf ("enter number of students (<%d) \n", SIZE);
scanf ("%d",&n) ;
if(n > SIZE)
{

printf ("error \n");

return O;
}
for(i=0; i<n; i++)
{

printf ("\nGive roll number, name, markl, mark2 of student ’%d\n", i+1);

1[i]=inputStudentDetails();

printf ("\n");

updateTotal(&1[il);
}
swap(&1[0], &l[n-11);
printf ("\nupdated list is \n");
for(i=0; i<n; i++)
{

printStudentDetails(1[i]);
+

The above main() function invokes four functions; inputStudentDetails(),swap(),
printStudentDetails () and updateTotal() . The function call inputStudentDetails()
in the instruction 1 [i]=inputStudentDetails() is intended to read the details of the 7"
student to the location of 1[i]. and the function call printStudentDetails(1[i]) is
used to display the details of 1[i]. The function call updateTotal (&1[i]); is used to
update total mark of the student whose details are stored in 1[i] and the function call

7

swap(&1[0], &1[n-1]); is intended to exchange the details of students stored as 1[0]
and 1[n-1].

Since the definition of the structure is different from our earlier definition, we can
rewrite the inputStudentDetails() function as follows.

struct student inputStudentDetails()
/*Input details of one student and return it */

{
struct student s;
scanf ("%d", &s.roll);
scanf ("%14s", s.name);
scanf ("%d", &s.marks[0]);
scanf ("%d", &s.marks[1]);
return s;

}

The function swap () can be declared as follows.

void swap(struct student *, struct student *);

The definition of the function can be written as follows.

void swap(struct student *psl, struct student *ps2)

{
struct student temp;
temp=*psl;
*psl=*xps2;
*ps2=temp;

b

Notice the similarity of the above function definition with the swap () function we studied
earlier for exchanging the values of two integer variables.

When the statement temp=+*ps1 is executed, the values of all member fields of the
structure variable whose address is stored in ps1 are copied to the locations of the cor-
responding fields of temp. Note that, if some member fields is an array like marks in
the above example, all the elements of the array get copied. Thus, the single statement
temp=+ps1 is equivalent to executing the following set of instructions.

temp.roll=(*psl) .roll;
temp.marks [0]=(*ps1) .marks[0] ;
temp.marks [1]=(*psl) .marks[1];
temp.total=(*psl) .total;
strcpy (temp.name, (*psl) .name) ;

Now, let us consider the declaration of the function updateTotal(). Since, we need to
change the total field of a student using this function, it is necessary to pass the address
of the student variable whose total has to be updated as the parameter. Therefore, as

in the case of the swap() function defined before, the parameter of this function should
also be of type struct student *. The declaration of the function updateTotal() is as
follows.

void updateTotal(struct student *);

The definition of this function can be made as follows

void updateTotal(struct student *ps)
/*Update the total marks of one student whose address is the parameter */

{
(*ps) .total=(*ps) .marks [0] +(*ps) .marks[1];

Note that, the brackets around *ps is necessary, because the dot (.) operator has got
higher precedence than the star (*) operator.

