(CS1100 - Lecture 15

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

In the last class, we were discussing about number systems and binary representation
of decimal numbers. The representation of decimal numbers in binary format inside a
computer uses a fixed number of bytes. Depending on the value to be represented there
are different variants of integer type available in C. Each of these variants differ in the
number of bytes used to store a variable.

From the discussion in previous lecture, recall that signed numbers are represented
using 2’s complement representation in computers. Further, the largest signed integer that
can be represented using 8 bits is 01111111, which is equal to -27 x0+20 x 1+...+2x 1 =
27 — 1 = 127,9. Also, the smallest signed integer that can be represented using 8 bits is
10000000, which is equal to -27 x 1 4+2° x 0+ ... +2° x 0 = —128,. In general, if 'k’ bits
are used to store a signed integer, the largest possible number that can be represented is
2F=1 _ 1 and the smallest integer that can be represented is -2¢~1.

Some variants of integers available in C corresponding to different lengths of represen-
tation are the following.

e int

e short int

e long int

e long long int

Apart from these, the keyword unsigned can be also used with any of the above types to
denote that the number should be considered as an unsigned number, i.e., its left most
bit should be considered to have positive weight, as against negative weight for signed
numbers. If the number is unsigned, the largest number that can be represented using &
bits is 2F — 1.

The following program displays the size of different types of integers available in C
and the maximum and minimum values that can be represented using type int and the
maximum unsigned value that can be represented using type unsigned int.



#include<stdio.h>
#include<limits.h>
int main()

{
printf("an integer occupies %d bytes \n",sizeof (int));
printf("a short integer occupies %d bytes \n",sizeof (short int));
printf("a long long integer occupies %d bytes \n",sizeof (long long int));
printf ("maximum integer is %d \n",INT_MAX);
printf ("minimum integer is %d \n",INT_MIN);
printf ("maximum unsigned integer is %u \n",UINT_MAX);
return O;
}

When this program was executed on my computer, the output obtained is as given
below.

an integer occupies 4 bytes

a short integer occupies 2 bytes

a long long integer occupies 8 bytes
maximum integer is 2147483647

minimum integer is -2147483648
maximum unsigned integer is 4294967295

Note that, the output may change from one system to another. The general rule is
that a short int variable is at least of length 16-bits and at most the length of int. Data
type int has length at least 16-bits. Data type long int is of length at least 32-bits and
its length cannot be less than that of int. Data type long long int is of length at least
64-bits and its length cannot be less than that of long int.

Overflow errors

If we use a particular type of integer to represent a variable, say for example the declaration
int a, and we try to represent a number by this variable a which is beyond the range of
values that can be represented by nt, the result will be incorrect. Similarly, suppose
we have two integer variables int z,y such that values of x and y are within permissible
limits of values that can be represented by int, but the value of x+y is outside the range
of int, then the expression x+y will produce an incorrect result. While doing arithmetic
operations, a programmer has to be aware of such pitfalls and declare variables of the
correct type depending on the values that may get assigned to the variable. If such
overflow errors occur, the compiler will not be able to give any compilation error, warning
or runtime error message, because the error is logical.

Consider a program with two integers x, y, where x and y store large integer values,
such that their sum is outside the range of an integer. We will show different ways of
computing the sum of x and y. Some of these methods will produce overflow errors and
there are some ways to avoid an overflow error using appropriate data types.



Attempt 1:
In the following program, the result of the addition is stored to an integer which causes
an overflow which in turn produces a wrong output.

#include<stdio.h>
#include<limits.h>
int main()

{
int x, y;
int z;

x=1234567890;

y=X;

Z=X+Yy;

printf ("%d+kd is %d!'!!'\n", x, y, 2);

return O;

Output
1234567890+1234567890 is -1825831516!1!!

Attempt 2:

In the program given below, the type of the variable which stores the result is changed to
long long int. This program also produces a wrong output because in the instruction
z=x+y;, the computation z + y is performed first, before the resultant value is assigned
to z. Thus the program still has an overflow error.

#include<stdio.h>
#include<limits.h>
int main()

{
int x, y;
long long int z;

x=1234567890;

Y=,
Z=x+y;
printf ("%d+%d is %11d!!'!\n", x, y, 2);

return O;

Output
1234567890+1234567890 is -1825831516!!!



Attempt 3:

In the program given below, the result of the computation x+y is type casted to long long
int in an effort to avoid overflow. But this still doesn’t work, because the evaluation of
x+y is performed first which causes an overflow. Afterwards, this wrong result is getting
type casted to long long int, which will be still incorrect.

#include<stdio.h>
#tinclude<limits.h>
int main()
{

int x, y;

long long int z;

x=1234567890;

Yy=X;

z=(long long int) (x+y);

printf ("%d+%d is %11d!!'!\n", x, y, 2);

return O;

Output
1234567890+1234567890 is -1825831516!!!

Attempt 4:

In the program given below, the value of the first variable x is type casted to long long
int and it is added with the value of y. In this addition, the operands are of different
lengths. So the value of the smaller length operand is internally converted to the longer
type long long int while doing the addition. The resultant value is considered to be
of type long long int. This will be a correct sum and it is assigned to z which is also
of type long long int. Thus, there is no overflow in this program and the output is
correct.

#include<stdio.h>
#tinclude<limits.h>
int main()
{

int x, y;

long long int z;

x=1234567890;

Y=X;

z=(long long int)x+y;

printf ("%d+%d is %11d!!'!\n", x, y, 2);

return O;



Output

1234567890+1234567890 is 2469135780!!!

Attempt 5:

The following program handles the chances of overflow in a different way. For computing
the sum of x and y, the value of x is first assigned to z which is of type long long int.
Now, for computation of z+y in the instruction z=z+y;, since operands are of different
lengths, their values are internally converted to the bigger type, which is long long int
and then the addition is performed and the result obtained will be of type long long
int. So far, the result is correct. When the result of evaluation of z+y is assigned to z,
it will not cause any overflow, because z is long long int.

#include<stdio.h>
#include<limits.h>
int main()

{

int x, y;
long long int z;

x=1234567890;
y=x;

Z=X;
Z=Z+y;
printf ("%d+%d is %11ld!!!\n", x, y, 2);

return O;

Output

1234567890+1234567890 is 2469135780!!!



