
CS1100 - Lecture 25

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

How to handle arrays?

In the last few classes, we learned how to pass variables as parameters to functions. In
this lecture, we will discuss how to pass arrays as parameters to functions, so that the
array elements can be modified using the functions. In this lecture we will concentrate on
passing one-dimensional arrays as parameters to functions.

Let us first consider a common situation where there is a function which reads in values
to the elements of an array, another function which manipulates some array elements and
a third function that is used to print the array elements. Consider a sample main()

function declaration as given below.

int main()

{

int a[20], n;

printf("enter size of the array (<=20) \n");

scanf("%d",&n);

if(n>20)

{

printf("wrong input \n");

}

else

{

input_array(a, n);

printf("\n array is \n");

print_array(a, n);

swap(&a[0],&a[n-1]);

printf("\n modifiled array is \n");

print_array(a, n);

}

return 0;

}

The above main() function invokes three functions; input array(), print array()

and swap(). The function call input array(a,n) is used to read n values into the array
a and the function call print array(a,n) is used to print n elements of the array a.

1

In both these function calls, we have passed the name of an array of integers and
the length of the array as the parameters. Since the name of an array of integers stands
for the address of the first element of the array, the expression a is equivalent to the
expression &a[0]. Since a[0] is an integer, &a[0] is a pointer to an integer. Since we
are passing a which is a pointer to an integer as the first parameter and n which is an
integer as the second parameter while invoking the function calls print array(a,n) and
input array(a,n), the function headers of these functions have to be declared as follows.

void input_array(int *, int);

void print_array(int *, int);

The function call swap(&a[0],&a[n-1]) is intended to exchange the values of a[0] and
a[n-1]. Since the invocation of the swap() function takes of addresses of two integers as
parameters, the declaration of this function should be as follows.

void swap(int *, int *);

The definition of the function input array() can be done as follows.

void input_array(int *x, int k)

/*input n elements to the array with starting address x*/

{

int i;

printf("enter array elements \n");

for(i=0; i < k; i++)

{

scanf("%d",&x[i]);

}

}

Similarly, the definition of the function print array() can be done as follows.

void print_array(int *x, int k)

/*prints elements of an n element array with starting address x*/

{

int i;

for(i=0; i<k; i++)

{

printf("%d ",x[i]);

}

printf("\n");

}

2

The swap() function can be defined exactly the same way as we did it in the last
lecture.

void swap(int *x, int *y)

{

int temp;

temp=*x;

*x=*y;

*y=temp;

}

We can combine all the function definitions given above and complete the program as
follows.

#include <stdio.h>

void input_array(int *, int);

void print_array(int *, int);

void swap(int *, int *);

int main()

{

int a[20], n;

printf("enter size of the array (<=20) \n");

scanf("%d",&n);

if(n>20)

{

printf("wrong input \n");

}

else

{

input_array(a, n);

printf("\n array is \n");

print_array(a, n);

swap(&a[0],&a[n-1]);

printf("\n modifiled array is \n");

print_array(a, n);

}

return 0;

}

void input_array(int *x, int k)

/*input n elements to the array with starting address x*/

{

int i;

printf("enter array elements \n");

for(i=0; i < k; i++)

{

scanf("%d",&x[i]);

}

}

3

void print_array(int *x, int k)

/*prints elements of an n element array with starting address x*/

{

int i;

for(i=0; i<k; i++)

{

printf("%d ",x[i]);

}

printf("\n");

}

void swap(int *x, int *y)

{

int temp;

temp=*x;

*x=*y;

*y=temp;

}

Let us consider the execution of this program with the input values n=5 and the array
a={10, 9, 8, 7, 6}.

The following figure shows the memory state diagram just after executing the scanf

instruction in main().

n

2000 a[0]

2004 a[1]

2008 a[2]

a[19]

frame 1

junk

junk

junk

junk

junk

junk

junkjunk

5

junk

.

.

.

.

.

.

4

After this, the execution of main() continues and when the function input array(a,n)

is invoked, a new stack frame is created in memory. The values of the parameters a and
n in the function call are copied to the locations of the formal parameters x and k. Note
that, the value of a is &a[0] which is 2000 as per the earlier figure and this is the value
that is getting copied as the value of the integer pointer x in the new frame. The memory
state diagram when the function input array() starts to execute is given below.

2000 a[0]

2004 a[1]

2008 a[2]

a[19]

.

.

.

n

frame 2

frame 1

k

i

5

2000

junk

5

junk

x

2012 a[3]

junk

.

.

.

2016 a[4]

junk

junk

junk

junk

Since the value of x is 2000, x[0] (which is the same as *(x+0)) refers to the variable
stored in location 2000. In general, x[i] (which is same as *(x+i)) refers to the variable
stored in location 2000+i× size of int. Note that, this variable is nothing but a[i].
Therefore, the expressions &x[i] and &a[i] denotes the same address.

When the instruction scanf("%d",&x[i]); is executed, input value is taken to the
location whose address is &x[i] which is the same as the location whose address is &a[i].
Thus, when this instruction is executed, input value is getting stored in the location of
a[i]. When the for loop repeats for values of i from 0 to k-1 (which is 4), input values
{10, 9, 8, 7, 6} are respectively getting stored in locations of a[0] to a[4].

5

The contents of the memory location after completing the execution of the for loop
in the input array() function is as follows.

2000 a[0]

2004 a[1]

2008 a[2]

a[19]

.

.

.

n

frame 2

frame 1

k

i

5

8

2000

9

10

5

5

7

x

2012 a[3]

junk

.

.

.

2016 a[4]
6

After this, the function input array finishes its execution and program control trans-
fers back to main() to the line after the instruction input array(a, n); . The memory
state diagram at this point is shown in the figure below.

2000 a[0]

2004 a[1]

2008 a[2]

a[19]

.

.

.

n

frame 1

5

8

9

10

72012 a[3]

junk

.

.

.

2016 a[4]
6

After executing the next printf statement, the function print array(a,n) is invoked
and again a new stack frame is created in memory. The values of the parameters a and
n in the function call are copied to the locations of the formal parameters x and k as it
was done during the function call input array(a,n).

6

The memory state diagram when the function print array() starts to execute is
given below.

2000 a[0]

2004 a[1]

2008 a[2]

a[19]

.

.

.

n

frame 2

frame 1

k

i

5

8

2000

9

10

5

junk

7

x

2012 a[3]

junk

.

.

.

2016 a[4]
6

As discussed in the case of the input array() function, the expression x[i] denotes
the same locations as the a[i]. Therefore, when the for loop in the print array()

function executes for i=0 to 4, the values of a[0] to a[4] are printed. After this,
print array() function finishes its execution and the program control returns to the
main() function.

At this point, the content of the memory location is as shown below.

2000 a[0]

2004 a[1]

2008 a[2]

a[19]

.

.

.

n

frame 1

5

8

9

10

72012 a[3]

junk

.

.

.

2016 a[4]
6

7

The execution continues in main() and the function call swap(&a[0],&a[n-1]) is
invoked. A new stack frame for swap() is created and the values of the parameters
&a[0],&a[n-1] are copied as the values of the pointer variables x and y. At this point,
the contents of memory locations are as shown below.

2000 a[0]

2004 a[1]

2008 a[2]

a[19]

.

.

.

n

frame 2

frame 1

y

temp

5

8

2000

9

10

2016

junk

7

x

2012 a[3]

junk

.

.

.

2016 a[4]
6

In the previous lecture, we have already seen how the swap() function works.
The memory state diagram just before the function swap() finishes its execution is

shown in the figure below.

2000 a[0]

2004 a[1]

2008 a[2]

a[19]

.

.

.

n

frame 2

frame 1

y

temp

5

8

2000

9

6

2016

10

7

x

2012 a[3]

junk

.

.

.

2016 a[4] 10

8

The following figure shows the contents of the memory locations after the function
swap() finishes its execution and the program control returns to main() to the next line
after the function call swap().

2000 a[0]

2004 a[1]

2008 a[2]

a[19]

.

.

.

n

frame 1

5

8

9

6

72012 a[3]

junk

.

.

.

2016 a[4]
10

Finally, the print array() function is executed once again as earlier and the modified
array elements are displayed. The output of the above program is given below.

array is

10 9 8 7 6

modifiled array is

6 9 8 7 10

Another way of declaring functions with array parameters

Recall that, the functions input array() and print array() in the previous program
were declared as:

void input_array(int *, int);

void print_array(int *, int);

The function headers in their definition were as:

void input_array(int *x, int k)

void print_array(int *x, int k)

Instead of the above method, there is another equivalent way of declaring and defining
these functions.

Declaration

void input_array(int [], int);

void print_array(int [], int);

The function headers in the definition

void input_array(int x[], int k)

void print_array(int x[], int k)

9

This new method of writing works exactly the same way as our earlier method. The
entire program can be re-written in the new format as given below.

#include <stdio.h>

void input_array(int [], int);

void print_array(int [], int);

void swap(int *, int *);

int main()

{

int a[20], n;

printf("enter size of the array (<=20) \n");

scanf("%d",&n);

if(n>20)

{

printf("wrong input \n");

}

else

{

input_array(a, n);

printf("\n array is \n");

print_array(a, n);

swap(&a[0],&a[n-1]);

printf("\n modifiled array is \n");

print_array(a, n);

}

return 0;

}

void input_array(int x[], int k)

/*input n elements to the array with starting address x*/

{

int i;

printf("enter array elements \n");

for(i=0; i < k; i++)

{

scanf("%d",&x[i]);

}

}

void print_array(int x[], int k)

/*prints elements of an n element array with starting address x*/

{

int i;

for(i=0; i<n; i++)

{

printf("%d ",x[i]);

}

printf("\n");

}

10

void swap(int *x, int *y)

{

int temp;

temp=*x;

*x=*y;

*y=temp;

}

An incorrect way of reading values to an array

Consider the following program in which the function input array() declares a lo-
cal variable int x[20], reads the values to elements of the array x and returns x to the
main() function and assigns this return value to a variable of type int *.

#include <stdio.h>

int * input_array(int);

int main()

{

int *a, n;

printf("enter size of the array (<=20) \n");

scanf("%d",&n);

if(n>20)

{

printf("wrong input \n");

}

else

{

a=input_array(n);

}

return 0;

}

int * input_array(int k)

/*input n elements to the array with starting address x, n<=20*/

{

int x[20],i;

if(n<=20)

{

printf("enter array elements \n");

for(i=0; i < n; i++)

{

scanf("%d",&x[i]);

}

}

return x;

}

11

Consider the execution of the above program for n=5 and a={10, 9, 8, 7, 6}. Just
before invoking input array() function from main() , the memory state diagram is as
follows.

n

a junk

5

stack frame 1

When the function input array() is invoked, a new stack frame is created and it will
allocate space for the input array x, n and i. At this point, the contents of the stack
frame in the memory is as follows.

2000 x[0]

2004 x[1]

2008 x[2]

x[19]

.

.

.

n

frame 2

frame 1

n

i

5

junk

5

2012 x[3]

junk

.

.

.

2016 x[4]

junk

junk

junk

junk

a junk

junk

After this, values for the array elements are read from the terminal one by one, while
executing the for loop. The contents of the memory locations just before returning from
input array() function is as follows.

2000 x[0]

2004 x[1]

2008 x[2]

x[19]

.

.

.

n

frame 2

frame 1

k

i

5

5

2012 x[3]

junk

.

.

.

2016 x[4]

a junk

5

10

9

8

7

6

12

When the function input array() finishes execution, the stack frame of input array()

is deleted from memory and the return value x which is the address of x[0], which is
2000 is returned to main() and this return value gets assigned to a, because a is on the
left hand side of the function call a=input array(n);. The following figure shows the
contents of the stack frame after finishing the execution of the function input array().

n

a 2000

5

stack frame 1

The problem now is that, the pointer a stores the address 2000, whose contents no
longer exist. The location with address 2000 may get allocated for some other purpose
and if we try to access any element of the array, say try to display the value of a[0], it
might result in a segmentation fault.

Rewriting selection sort algorithm

Recall the sorting algorithm that we discussed in the Lecture 9. Suppose we have n

numbers for sorting which are stored in an array a. The basic algorithm for selection
sorting is given below.

1. for i=1 to n-1

2. {

3. find out maxposn, the position of the maximum among a[0] to a[n-i]

4. swap(a[n-i],a[maxposn])

5. }

To implement the selection sort program using functions, we will define a sort array()

function, which takes an array of integers x and its size n as parameters and performs
the steps of the algorithm given above. The declaration of this function can be made as
follows.

void sort_array(int *,int);

For defining the sort array() function, we will make use of the following functions:

• For implementing line 3 of the algorithm define a function getMaxpos() which takes
an array x and an index k as parameters and returns the position of the maximum
element among x[0] to x[k].

The declaration of this function can be made as follows.
int getMaxpos(int *,int);

• For implementing line 4 of the algorithm, we can use the swap() function which we
have defined earlier.

The function getMaxpos() is easy to implement. One way to do this is as follows.

13

int getMaxpos(int *x, int upper)

{

int i, max_pos=0;

for(i=0;i<=upper;i++)

{

if(x[i] > x[max_pos])

max_pos=i;

}

return max_pos;

}

Apart from these functions, we will also need to use the functions input array() and
print array() which we have defined earlier.

The complete program for implementing selection sort is given below.

#include<stdio.h>

void input_array(int *,int);

void sort_array(int *,int);

int getMaxpos(int *,int);

void swap(int *, int *);

void print_array(int *, int);

int main()

{

int a[20],n;

printf("Enter the size of the array (<=20) : ");

scanf(" %d",&n);

if(n<=20)

{

input_array(a,n);

sort_array(a,n);

printf("\n Sorted list is : \n");

print_array(a,n);

}

return (0);

}

void sort_array(int *x, int n)

/* sorting an array of n elements with

starting address x using selection sort*/

{

int posn, i;

for(i=1;i<n;i++)

{

posn=getMaxpos(x,n-i);

swap(&x[posn], &x[n-i]);

}

}

14

int getMaxpos(int *x, int upper)

/* returns index of the maximum element among

x[0] to x[upper] */

{

int i, max_pos=0;

for(i=1;i<=upper;i++)

{

if(x[i] > x[max_pos])

max_pos=i;

}

return max_pos;

}

void swap(int *x, int *y)

{

int temp;

temp=*x;

*x=*y;

*y=temp;

}

void input_array(int *x, int k)

/*input n elements to the array with starting address x*/

{

int i;

printf("enter array elements \n");

for(i=0; i < k; i++)

{

scanf("%d",&x[i]);

}

}

void print_array(int *x, int n)

/*prints elements of an n element array with starting address x*/

{

int i;

for(i=0; i<n; i++)

{

printf("%d ",x[i]);

}

printf("\n");

}

15

