(CS1100 - Lecture 16

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

In the previous class, we had studied that integer variables can be represented pre-
cisely. Now, let us consider the representation of real numbers. It is a well known fact
that not every Real number can be precisely represented using finitely many digits in
decimal representation. For example, the rational value 1/3 does not have a finite deci-
mal representation. However, if we fix the number of digits after the decimal point as 3,
then 1/3 can be approximated as 0.333. If we have more digits after the decimal point,
the approximation becomes better. But we can not achieve 100% accuracy. In binary
representation also, we have to handle similar issues.

Converting Real numbers from decimal to binary

Consider a Real number which can be represented using finitely many digits. For example,
consider 52.375. Here, the places after the decimal point have their positional values as
negative powers of 10. The first digit after the decimal point has positional value 1/10,
the next digit after the decimal point has positional value 1/100 and so on. We have

52.375 = 5 x 10" +2 x 10° + 3/10 + 7/10% 4+ 5/10?

To convert this number to binary we will convert the integer part (52) and fractional part
(.375) separately into binary and concatenate both the results. The conversion of integer
part is using the same method we discussed in the previous class. The binary equivalent
of 52 is 00110100. To convert the fractional part into binary we will repeatedly multiply
the fractional part by 2 and note down the integer part of the result of multiplication,
until the resultant fractional part becomes 0.

2 x 0.375 = 0.75 — integer part 0
2 x 07 =15 integer part 1
2x05=1.0 integer part 1

Thus,

0.37519 = 0.0115 and
52.37519 = 00110100.0115

Consider the decimal to binary conversion of the number 0.3.

2x03=006 integer part 0
2x06=1.2 integer part 1
2x02=04 integer part 0
2x04=08 integer part 0
2x08=16 integer part 1
2x06=12 integer part 1
2x02=04 integer part 0
2x04=038 integer part 0
2x08=16 integer part 1
2x06=12 integer part 1

Therefore, the binary equivalent of 0.3 is 0.01001100110011.... It requires an infinite
number of bits after the decimal point though, we have an exact finite decimal represen-
tation 0.3 for the same number.

Computer representation of Real numbers

As we saw in the previous section, not every Real number has an exact finite representation
in binary. Since, in a computer the storage is definitely finite, some loss in precision while
representing Real numbers is unavoidable.

In C language, the data types float, double, long double are used for representing Real
numbers. These are called floating point number representations. The accuracy of the
representation is the least for float and the best for long double. But none of these
representations are precise, as we explained above. Therefore, while doing comparisons
between two floating point numbers, a programmer should be cautious of errors because
of the lack of precision in the representation. The following program demonstrates this
fact.

#include<stdio.h>
int main()

{
float x, y, z;

x=1;

Y,

if (x/y == 0.200000)

printf("equality check 1 passed \n");
else

printf("equality check 1 failed \n");

z=x/y;

printf ("%f\n", z);
x=1.3333;

y=52.2;

Z=X+Y;
printf("%f + %f = %f !'!'!"\n",x, y, 2);

return O;

The output of the above program, when it is executed in my machine is as follows.

equality check 1 failed
0.200000
1.333300 + 52.200001 = 53.533302 !!!

Though the value of 1/5 is equal to 0.200000, there could be lack of precision while rep-
resenting the value 1 using the variable x and the value 5 using the variable y. Moreover,
when x/y is computed, some inaccuracy would have occurred while storing the result.
Any of the above can be the reasons of the equality check failing while evaluating the
condition (x/y == 0.200000).

Note that, after storing the value 52.2 in y and printing it back, the output printed is
52.200001. Moreover, after adding 1.333300 and 52.200001, we may expect the result to
be 53.533301; but the result obtained is 53.533302.

One point to note here is that the results are not precise; but the error in the repre-
sentation is not large. If we want to compare between two floating point values, we should
allow some tolerance for imprecision.

IEEE-754 standard for floating point representations

A floating point number is usually represented using scientific notation. This notation
has a mantissa or precision part and an exponent part. Let us consider a number like
52.25 x10°. This number can be also represented as 5.225 x 10%. This form in which there
is exactly one digit before the decimal point and that one digit is non-zero is known as
a normalized representation. In this normalized decimal representation, 5.225 represents
the precision (mantissa) and 6 is the exponent.

IEEE-754 standard defines the following three floating point data types for represent-
ing binary numbers. These standards are adopted by most of the devices and applications
in use.

e single precision floating point (float) 32 bits
e double precision floating point (double) 64 bits

e extended double precision floating point (long double) 12 bytes

Single precision floating point format

Suppose x is a positive Real number that we want to represent using a single precision
floating point format. This format uses 23-bits for storing the mantissa and 8-bits for
storing the exponent and one bit for storing the sign.

First consider the normalized binary representation of x to the accuracy of 23-bits
after the decimal point. Recall that in the normalized binary representation, there will be
exactly one bit before the decimal point and that bit will be 1. Suppose, this normalized
representation of x is given by 1+ m;m,...my3 X 2%. Since the bit before the decimal point
is always 1, there is no need to waste one bit for storing that part while representing the
number in a computer. For this reason, in the single precision floating point format, the
23-bit mantissa part will store only mym, . ..my3. To represent the exponent k, the unsigned
binary equivalent of k+127 is computed and stored in bits e7 - - - eseqeg.

As per the standard, 32 bit floating point representation of real numbers is shown in
the figure below.

Sign Mantissa / Precission Exponent
S mi1 Mo M3 v ma3| €7 cee €y €1 €
1 bit 23 bits 8 bits

Figure 1: Single precision floating point representation

There are three parts in the representation; sign, mantissa and exponent. The sign
bit can be either 0 or 1, where 1 represents a negative number and 0 represents a positive
number. Then comes the mantissa part which represents the precision. The third part is
the exponent.

All 1’s bit pattern and all 0’s bit pattern in the exponent are reserved for special
purposes. Apart from these two, there are 254 different 8-bit patterns available for the
exponent. These 254 possibilities are mapped to exponent values -126 to +127 as follows.

e7 €6 €5 €4 €3 €9 €1 €y | Exponent Value
00000001 -126
00000010 -125
00000011 -124
11111101 +126
11111110 +127

The number represented by the pattern shown in Figure 1 is approximately
S my mao ma3 k
A (1) <)
where k is obtained by subtracting 127 from the decimal equivalent of the unsigned binary
number represented by the bit pattern e;---eseq €.

The largest possible number that can be represented using single precision floating
point representation is represented by the following bit pattern

Sign Mantissa / Precission Exponent
0 111 1 1 110
1 bit 23 bits 8 bits

Figure 2: Largest positive number using single precision floating point representation

The value corresponding to this number is

1 1 1 127
(gt tgm)x2)
%2128

When 2!28 is converted to decimal, it is close to 103%, because 128 x l0g;¢2 = 38.
The lowest possible positive number corresponds to the bit pattern

Sign Mantissa / Precission Exponent
0 000 0 0 e 001
1 bit 23 bits 8 bits

Figure 3: Smallest positive number in single precision floating point representation

The number represented by the above bit pattern is 1 x 27126 ~ 10738,

Special values

A 32-bit pattern with both the mantissa and exponent parts equal to 0 represents the
number 0. A 32-bit pattern with all exponent bits equal to 1 and all mantissa bits equal
to 0 represents in finity. A 32-bit pattern with all exponent bits equal to 1 and a non
zero mantissa represents NaN (Not a Number).

Epsilon of Single precision floating point

Epsilon of the single precision floating point representation is the smallest positive number
x such that the representation of 1.0 4+ x can be precisely done using the single precision
floating point representation and 1.0 + x # 1.0. This number 1.0 + x corresponds to the
following bit pattern.

Sign Mantissa / Precission Exponent

0 000 1 0111 --- 111

1 bit 23 bits 8 bits

Figure 4: Epsilon of the single precision floating point representation

This bit pattern corresponds to the number (1 + 2723) x 2°. Therefore, epsilon is
272 which is approximately equal to 10~7. Epsilon is a measure of the precision of
the representation. It can also be considered as the largest relative error that can occur
while representing a real number within the range of values possible (relative error in the
representation of a real number z is given by |x — r|/|x| where r is the floating point value
used to represent x approximately in the single precision floating point format).

Double precision floating point format

In double, 64 bits are used for representing a real number. In this 64 bits, 1 bit is used for
sign, 52 bits are used for representing mantissa and the remaining 11 bits for representing
exponents.

Sign Mantissa / Precission Exponent
S myp My M3 ms2| €19 s €y €1 €
1 bit 52 bits 11 bits

Figure 5: Double precision floating point representation

Double precision format can represent numbers more precisely because there are more
bits in the mantissa. Since there are more bits in the exponent, it can also store larger
numbers. Similar to what we have done in the case of single precision floating point
numbers, we can compute the different parameters for double precision floating point
numbers also. In this case, the possible values of the exponent ranges from -1022 to +1023.
The highest number that can be represented using double is approximately 21924 ~ 10308
and the smallest positive number that can be represented is ~ 1073%. Epsilon of the
representation is approximately 27°2 which is approximately 10716,

Floating point representations in C

In C, there are three basic floating point formats: float, double and long double. The
data type float is exactly the same as the IEEE single precision floating point format.
The data type double is exactly the same as IEEE double precision floating point format.
Computations and storage using the above two formats are usually done in hardware in
64-bit machines. The data type long double uses at least 12 bytes and this format is

often implemented in software. This can be either same as the extended double precision
format of IEEE or it could be slightly different. The different parameters of floating point
representations are defined in the library file float.h. The following program displays
some of these parameters.

#include<stdio.h>
#include<float.h>
int main()
{
printf("a float variable occupies %d bytes \n",sizeof(float));
printf("a double variable occupies %d bytes \n",sizeof (double));
printf ("maximum float value is %g \n",FLT_MAX);
printf ("minimum positive float is %g \n",FLT_MIN);
printf("epsilon for float is %g\n",FLT_EPSILON);
printf ("maximum exponent for a float variable in base 2 is %d \n",FLT_MAX_EXP;

return O;

}
The output of this program is given below.

a float variable occupies 4 bytes

a double variable occupies 8 bytes

maximum float value is 3.40282e+38

minimum positive float is 1.17549e-38

epsilon for float is 1.19209e-07

maximum exponent for a float variable in base 2 is 128

