(CS1100 - Lecture 11

Instructor : Jasine Babu
Teaching Assistants : Nikhila K N, Veena Prabhakaran

Two-dimensional arrays

We have a lot of situations which are naturally suitable for using higher dimensional
arrays. For example, when we deal with matrices. A matrix M of order m x n has m rows
and n columns. In each row of M, there are n elements. Performing matrix operations
such as matrix product, various matrix transformations like exchanging two rows of a
matrix etc., are easier to implement in C using two-dimensional arrays. Theoretically
these problems can be solved using single dimensional arrays also, but it will be very
difficult to implement.

For example, suppose we are representing an m xn matrix M using a single dimensional
array a of size mn in which Row 0 elements are stored first, followed by Row 1 elements,
and so on. If we use this method, the element of the matrix M in i*" row and j* column
will have index ¢ X n 4 j in the single dimensional array a.

Suppose we want to exchange Row 0 and Row 2 of M. we will have to make the
following exchanges:

al0] with a[2n], a[1] with a[2n+1], a[2] with a[2n+2], ..., a[n-1] with a[3n-1].

But when we are using two-dimensional arrays, this task is very simple. This is because
we can directly go to the beginning of each row easily. Moreover, as in the case of single
dimensional arrays, we can directly access each element of the two dimensional array using
the indices of the element.

If M is a two-dimensional array, then M[0] [0] represents the element in 0* row and
0" column and M[0] [1] represents element in 0! row and 1% column. Similarly, M[1] [0]
represents the element in 1% row and 0% column. In general, the element in i** row and j**
column can be represented by M[i] [j]. For assigning a value 50 to an element M[i] [j]
of the array, we can use an instruction M[i] [j]=50.

The problem of exchanging Row 0 and Row 2 of M is now easier. Exchange M[0] [0]
with M[2] [0], M[0] [1] with M[2] [1], ..., M[0] [n-1] with M[2] [n-1]. This can be done
as follows.

for(i=0; i<n; i++)

{
t=M[0] [i];
M[0] [i]=M[2] [i];
M[2] [i]=t;

}

Remember that, the solution for the same problem with a single dimensional array needed
a more complicated way of calculating the indices of elements to be exchanged.

An example of declaring a two-dimensional array in C is given below.

int af4][3);

)

/N

rows # columns

A program to assign some values to elements of a 4 x 3 matrix and then rotate the rows
of the matrix is given below. Row 0 will be replaced by Row 1, Row 1 will be replaced
by Row 2, Row 2 will be replaced by Row 3 and Row 3 will be replaced by Row 0.

#include<stdio.h>
int main()
{
int i, j, al4]1(3], t[3];

/* Here a can be thought of as an array with 4 elements,
where each element of a is itself an array of 3 integers.

a can be also understood as a 4 X 3 matrix */

for(i=0; i<4; i++)
{
for(j=0; j<3; j++)
{
alil [j1= ixi+j;
}
}
printf (" __________________________ \n");
printf ("Matrix \n");
printf("___________________________ \n");
for(i=0; i<4; i++)
{
for(j=0; j<3; j++)
{
printf("%2d ", alil[j1);
}
printf("\n");
}

for(j=0; j<3; j++)
{

t[j]1=alo0] [j];
}

for(i=0; i<3; i++)
{
for(j=0; j<3; j++)

alil[j1=ali+1][j1;

}
for(j=0; j<3; j++)
{

al31[j1=t[jl;
}
printf("___________________________ \n");
printf ("Updated Matrix \n");

for(i=0; i<4; i++)

{
for(j=0; j<3; j++)
{
printf("%2d ", alil[j]1);
}
printf ("\n");
}
return O;

This program makes some initialization instead of taking values from the user.

executing

for(i=0; i<4; i++)

{
for(j=0; j<3; j++)
{
alil [j]= ixi+j;
}
}

the elements of a are as in the following matrix.

0 1 2
1 2 3
4 5 6
9 10 11

The following lines are used for displaying the elements of a in a matrix form.

printf("__________ __ \n");
printf ("Matrix \n");
printf("__________ _________________ \n");

After

for(j=0; j<3; j++)
{
printf("%2d ", alil[j]1);
}
printf("\n");

After execution of the above lines, the following output will be displayed.

The following lines are used to copy the elements of the first row of the matrix a into
the single dimensional array t.

for(j=0; j<3; j++)
{

t[jl=al0] [j];
}

After execution of the above loop, the values of the elements of the array t are 0, 1 ,2.
The following inner loop will be used to copy elements of Row i+1 to the corresponding
elements of Row 1.

for(j=0; j<3; j++)
{

alil [j1=ali+1][j1;
+

Hence the following code is used to exchange Row 0 with Row 1, Row 1 with Row 2, and
Row 2 with Row 3.

for(i=0; i<3; i++)

{
for(j=0; j<3; j++)
{
alil [j1=ali+1][j];
}
}

After executing the above part of the program, array a becomes

1 2 3
4 5 6
9 10 11
9 10 11

After the execution of the following lines, the values of elements in the array t are copied
to the values of the corresponding elements of Row 3 of the matrix a.

for(j=0; j<3; j++)

{
al3] [j1=t[j];
}
After executing the above lines, the matrix a is as follows.

1 2 3
4 5 6
9 10 11
0 1 2

The lines after this are used to display the updated matrix. These lines produce the
following output.

2000 a[0][0]
int a[4][3] 2004 al0][1]
2008 a[0][2]
200C a[1][0]
210 afu]
2014 afl]2]
2018 af2][0]
202C a[3][2]

As in single dimensional arrays, the memory locations for storing elements of a two-
dimensional arrays are also contiguous. Elements of row 0 are stored one by one and then
elements of row 1 are stored one by one and so on. The above figure explains this with
addresses shown in hexadecimal.

Technically, a two-dimensional array is an array of single dimensional arrays. If we
have declared an array int a[m] [n], then a is an array of m elements, where each of the
m elements can hold an address. Here, each of a[0], a[1], ... , al[m-1] is an array
of n integers. Elements of the array al[i] are the elements of the i"® row of the two-
dimensional array a. The value of the expression a[0] is the address of the first element
of row 0 of a (i.e., &a[0] [0]), the value of the expression a[1] is the address of the first
element of row 1 (i.e., &a[1] [0]) and so on. In general, the value of the expression a[i]
is the address of the first element of row i (i.e., &a[i] [0]).

In the example shown in the figure, a[0] is an array of 3 integers (a[0] [0], a[0][1],
a[0] [2]) and the value of the expression a[0] is 2000, which is the address of a[0] [0]
(i.e., the value of &a[0][0]). a[1] is also an array of 3 integers and the value of the
expression a[1] is 200C, which is the address of a[1] [0] (i.e., the value of &a[1] [0]).

We can access the location of each element through pointers. As in the case of single
dimensional arrays, the expression (a+i) has value &a[i]. Hence, * (a+1i) corresponds to
*x(&a[i]), which is equal to the value of a[i]. Thus, both *(a+i) and a[i] have value
same as the address of &a[i] [0]. Similarly, values of (a[i]l+j) and (x(a+i)+j) are equal
to the &a[i] [0] + (j X number of locations needed to store one integer).
This address is the same as the address of a[i] [j].

Since, the expression (*(a+i)+j) has value &a[i] [j] as explained in the previous
paragraph, *(x(a+i)+j) is the same as *(&a[i] [j]), which is also the same as a[i] [j].
Similarly, *(a[i]+j) is the same as a[i] [j]. Thus, the array element present in the
location i row and j* column can be represented by either a[i] [j1, *(x(a+i)+j) or
*(alil+j).

The following program demonstrates accessing elements of a two-dimensional matrix
using the different methods described above.

#include<stdio.h>
int main()
{

int i, j, al4][3];

/* Here a is an array with 4 elements,
where each element of a is itself an array of 3 integers
a can be understood as a 4 X 3 matrix x/

printf ("Memory Allocation Details \n");

printf("__________ __ __ \n") ;
for(i=0; i<4; i++)
{

for(j=0; j<3; j++)

{

printf ("&al%d] [%d] is %p \n",i, j, &alil[jD);

}
}
printf("__________ __ \n");
printf ("Row Addresses \n")
printf (" __________ __ \n") ;
for(i=0; i<4; i++)
{

printf("al%d] is %p , *(atkd) is %p\n",i, alil, i, *(a+i));

}
for(i=0; i<4; i++)
{
for(j=0; j<3; j++)
{
alil[j1= i*i+j;
}
}
printf("____________ \n");
printf ("Matrix \n");
printf("__________ __ \n") ;
for(i=0; i<4; i++)
{
for(j=0; j<3; j++)
{
printf("%2d ", alil[j1);
}
printf ("\n");
}
printf("__________ \n");
printf ("Matrix accessed via addresses - first way \n");
printf("___________________________ \n");
for(i=0; i<4; i++)
{
for(j=0; j<3; j++)
{
printf("%2d ", *(alil+j));
}
printf ("\n");
}
printf("___________ ________________ \n");
printf ("Matrix accessed via addresses - second way \n");
printf("____________ \n");
for(i=0; i<4; i++)
{
for(j=0; j<3; j++)
{
printf ("%2d ", *(x(a+i)+j));
}
printf("\n");
}
return O;

Consider the following part of the above program.

printf ("Memory Allocation Details \n");
printf("___________________________ \n");
for(i=0; i<4; i++)
{
for(j=0; j<3; j++)
{
printf ("&a[%d] [%d] is %p \n",i, j, &alil[j1);

by

After executing the above instructions, addresses of each element of the two-dimensional
array will be displayed. A sample output is shown below.

Memory Allocation Details
&a[0] [0] is 0x7ffd5cb3bdal
&a[0] [1] is 0x7ffd5cb3bdad
&a[0] [2] is 0x7ffd5cb3bda8
&al[1] [0] is Ox7ffd5cb3bdac
&al[1] [1] is 0x7ffd5cb3bdb0
&al[1][2] is 0x7ffd5cb3bdb4d
&a[2] [0] is 0x7ffd5cb3bdb8
&a[2] [1] is 0x7ffd5cb3bdbc
&al[2] [2] is 0x7ffd5cb3bdcO
&a[3] [0] is 0x7ffd5cb3bdc4
&a[3] [1] is 0x7ffd5cb3bdc8
&a[3] [2] is 0x7ffd5cb3bdcc

Consider the following part of the previous program.

printf("___________________________
printf ("Row Addresses \n");
printf (" __________________________
for(i=0; i<4; i++)

{

printf("al%d] is %p , *(at%d) is
}

After executing the above instructions, the addresses of the first elements in each row
of the array will be displayed as given below.

al0] is 0x7ffd5cb3bda0 , *(a+0) is 0x7ffd5cb3bdal
al1] is 0x7ffd5cb3bdac , *(a+1l) is 0x7ffd5cb3bdac
a[2] is 0x7ffd5cb3bdb8 , *(a+2) is 0x7ffd5cb3bdb8
al[3] is 0x7ffdbcb3bdc4d , *(a+3) is 0x7ffdb5cb3bdc4d

The following lines of code assigns some values to the elements of the matrix.

for(i=0; i<4; i++)

{
for(j=0; j<3; j++)
{
ali]l [j]= ixi+j;
}
}

After executing the above lines of code, the matrix is as follows.

0 1 2
1 2 3
4 5 6
9 10 11

The following parts of the program shows one method of accessing array elements using
address.

printf ("Matrix accessed via addresses - first way \n");
printf("_________ ______ ____________ \n");
for(i=0; i<4; i++)
{

for(j=0; j<3; j++)

{

printf("%2d ", *(alil+j));

}

printf ("\n");
}

After executing the above instructions, the following output will be displayed.

0 1 2
1 2 3
4 5 6
9 10 11

The following instructions of the program shows another method of accessing array
elements using address.

printf("_____________ __ ____________ \n");
printf ("Matrix accessed via addresses - second way \n");
printf("_________ ____ \n");
for(i=0; i<4; i++)
{

for(j=0; j<3; j++)

{

printf("%2d ", *(kx(a+i)+j));
+

printf ("\n");
}

After executing the above instructions, the following output will be displayed.

10

